
POMDP-Based Interaction and Interactive

Natural Language Grounding with a NAO Robot

by

Maxwell B. Forbes

Submitted to the Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of

Bachelor of Science with College Honors

at the

UNIVERSITY OF WASHINGTON

December 2013

Author .
Department of Computer Science and Engineering

December 13, 2013

Certified by. .
Rajesh P. N. Rao

Associate Professor
Thesis Supervisor

2

POMDP-Based Interaction and Interactive Natural

Language Grounding with a NAO Robot

by

Maxwell B. Forbes

Submitted to the Department of Computer Science and Engineering
on December 13, 2013, in partial fulfillment of the

requirements for the degree of
Bachelor of Science with College Honors

Abstract

In this thesis, I investigated POMDP-based interaction and the use of sensors for
natural language grounding in the NAO robot. I developed several tools throughout
to aid in accelerating the experimentation pipeline. I present an overview of my work
as well as preliminary results from experiments.

Thesis Supervisor: Rajesh P. N. Rao
Title: Associate Professor

3

4

Acknowledgments

The author gratefully acknowledges the continued guidance and support of Rajesh P.

N. Rao, Luke Zettlemoyer, and Maya Cakmak. He also would like to extend a huge

thank you to Michael Jae-Yoon Chung for his persistent mentoring and thoughtful

advice throughout this thesis work.

5

6

Contents

1 Introduction 13

2 POMDP-Based Interaction Basics 15

2.1 Motivation . 15

2.1.1 POMDPs in Spoken Dialog Systems 15

2.1.2 Incorporating Sensor Data . 17

2.2 Tasks . 17

2.2.1 The “Voicemail” problem . 17

2.2.2 Incorporating Sensor Data . 18

2.3 Results . 19

2.3.1 The “Voicemail” problem . 19

2.3.2 Incorporating Sensor Data . 19

3 POMDP State Estimation 23

3.1 Task . 23

3.2 First Approach: State Space Learning 24

3.2.1 Design . 24

3.2.2 Implementation . 24

3.2.3 Results . 24

3.3 Second Approach: Generative Approach 26

3.3.1 Design . 26

3.3.2 Implementation . 27

3.3.3 Results . 28

7

3.4 Application . 29

3.4.1 Data collection . 29

3.4.2 Data processing and discretization 29

3.4.3 Entry in JSON Spec File . 31

3.4.4 Generated POMDP File . 32

3.4.5 Solved POMDP File . 33

3.5 Conclusions . 33

4 Interactive NAO Experiments: Learning and Demonstration 35

4.1 Overview . 35

4.2 Real Time Monitoring System . 35

4.2.1 Design 1: Multiprocess, pyplot instances 36

4.2.2 Design 2: Multiprocess observers, single plotter 37

4.2.3 Design 3: Multiprocess, single pyplot 38

4.3 Foot Sensor Experiments . 40

4.3.1 Overview . 40

4.3.2 Results . 41

4.4 Multi-Class Experiments . 43

4.4.1 Approach . 43

4.4.2 Method . 44

4.4.3 Results . 44

5 Discussion and Extensions 47

5.1 POMDP . 47

5.1.1 Discussion . 47

5.1.2 Extensions . 49

5.2 Natural language grounding . 50

5.2.1 Discussion . 50

5.2.2 Extensions . 52

8

List of Figures

2-1 The learned belief function for the “light” vs “heavy” POMDP problem. 20

2-2 The observation function p(o′|a, s′) for our “light” vs “heavy” POMDP

problem. 20

2-3 The transition function p(s′|a, s) for our “light” vs “heavy” POMDP

problem. 20

2-4 The reward function r(a, s) for our “light” vs “heavy” POMDP problem. 21

3-1 A conceptual image of successive states encoding all words in the vo-

cabulary (4 of them) with possible sensor mappings in sensor space

(binary valued). Note that here we have pre-determined which words

map to which sensors; removing this assumption leads to more states. 24

3-2 The actions of a ‘state space learning’ POMDP environment, with addi-

tional formatting for clarity. A single entry, for example, vHeavy-oW3 vLight-oW2,

encodes the idea that the vocabulary word heavy is associated with the

weight sensor value 3, while the word light is associated with the weight

sensor value 2 . 25

9

3-3 The observations and sample observation function for a ‘state space

learning’ POMDP environment, with additional formatting for clarity.

Observations come in (vocabulary word, sensor1, sensor2, ..., sensorn)

tuples; in this case we have only one sensor. The observation function

has states (Figure 3-2) as rows and observations as columns, and serves

to weight states in a way that matches with whichever observation

came in. States that match the given observation are given observation

probability 0.4, whereas those that don’t are given probability 0.05.

Note that rows’ probabilities must sum to 1. 25

3-4 The generative model—a Naive Bayes. The true state s is unknown

and fixed, and is discovered by getting observations through successive

rounds of the POMDP. 27

3-5 This shows an example computation for one observation category (v:

“vocabulary”, i.e. natural language input) for the state w1 r0, which

means that the w state dimension is in discretization level (sub-state) 1,

and the r state dimension is in discretization level (sub-state) 0. Here,

the first three vocabulary words v0-v2 describe the w substate, and

the last two v3-v4 describe the r substate. Because this observation

category spans multiple state dimensions, the probabilities must be

normalized to sum to 1 for any given state, as states are a combination

of one choice per state dimension. We currently perform unweighted

normalization for simplicity. 29

3-6 Left: Collecting weight data for the NAO without any load on it, and

light data for a bright room. Center: Collecting weight data for the

NAO holding a box filled with packing peanuts. Right: Collecting light

data for the NAO wearing a helmet. 30

10

3-7 We tested the NAO with no weight (red), carrying a box (blue), and

wearing a helmet (green), with 500 data points per sample. There

are four foot sensors per foot on the NAO; in the left graph, we col-

lected data from each foot (you’ll notice the NAO is very unbalanced),

and in the right graph, we collected the total weight. Using the 1D

data, we can eyeball support vector machines and create classification

boundaries at around 3.23 and 3.43 Kg 30

3-8 The light measurement data is also separable. We modified the envi-

ronment in two ways: brightness of ambient lighting (artificial lights

and blinds), and the NAO wearing the helmet or not. We gather data

for all combinations of these and collected 500 data points for each

type. We are left with four linearly separable chunks, and can identify

where to draw classification lines. 31

4-1 A first attempt at implementing a real-time monitoring system for the

NAO. In the main process, different observer processes are spun up

using Python’s multiprocessing module. Relevant instructions are

recording from the main process’ speech recognition module, and mul-

tiplexed to the observer processes using Pipes. Each observer process

is responsible for querying one logical group of the NAO’s sensor val-

ues, and then rendering this information in a graph using one or more

held instances of pyplot figure objects. 37

4-2 A second attempt at implementing a real-time monitoring system for

the NAO. In contrast to Figure 4-1, this system uses the additional

observer processes only for querying the NAO’s sensor states, and per-

forms all plotting in the main thread using calls to the pyplot library. 38

11

4-3 A third attempt at implementing a real-time monitoring system for

the NAO. This design takes a hybrid approach of Figures 4-1 and 4-2.

It performs all observations and plotting in separate processes to avoid

the CPU-bound task of drawing the graphs in a single thread, but it

shares a single pyplot instance across all processes to avoid crashing

the system because of GUI/thread-related bugs. 39

4-4 A screen capture of the final, working version of the real-time sensor

monitoring system for the NAO. Upper left: Video feed. Bottom

left: Foot sensor readings. Upper right: Sonar readings. Bottom

right: Darkness (from camera) readings. 40

4-5 A screen capture of the experiments run to test the NAO’s foot sensors.

Upper left: The video feed is shown, with the experimenter on the

left and the NAO on the right. The NAO has a winter jacket placed

on it to measure its weight difference, and it is connected on its back

by a red Ethernet cable and a black power cable. Bottom left: the

annotation on the video annotates what phase of the experiment is in

progress. Upper right: One graph from the real-time monitoring sys-

tem, displaying combined foot sensor readings (there are 8 foot sensors

total; this value is their sum), where the most recent observation is on

the right side of the graph, and the graph ‘moves’ leftwards. Bottom

right: Also from the real time monitoring system, this displays the

exact number of the most recent observation of the sensor in question:

the combined foot sensors. 42

4-6 Training n different binary classifiers each on the full set of m features.

We use Naive Bayes to model the relationship between the human-

provided word and all of the robot’s sensor features. 43

12

Chapter 1

Introduction

The motivating question for this thesis was: how can we use multimodal interaction

with a NAO robot for grounded language acquisition, and in which scenarios will the

results demonstrate interesting applications?

In exploring this question, the work in this thesis spanned a number of topics.

The first central topic involved investigating the feasibility and usefulness of ap-

plying POMDPs to interactive scenarios with the NAO robot. Chapters two and three

consider this topic. Chapter two involves building an end-to-end system that demon-

strates the simple “Voicemail” POMDP problem1, and then augmenting this example

with multimodal input. Chapter three continues this work with the specification of

a class of state-estimation problems relevant to our domain. This motivated the con-

struction of a framework for: (a) the specification of such problems in a compressed

representation, (b) the compilation to a POMDP format, and (c) the integration with

an end-to-end system.

Chapter four switches from the ‘interaction’ task to the ‘learning’ task. Whereas

the POMDP work in chapters two and three assume learned probability distributions

of the NAO’s observation capabilities, chapter four investigates the learning of such

probability distributions. It looks at questions such as: which sensors of the NAO are

useful for gathering data that can be utilized for grounding natural language? How

1The “Voicemail” problem is the “Hello World” of POMDP problems, known usually as the
“Tiger Room” problem, but applied to the domain of spoken dialog systems by [23].

13

do the sensors behave under different conditions? What issues arise in realistically

training classifiers interactively with the NAO?

Chapter five gives a broader look at the results of chapters two through four and

discusses the future directions that are under consideration for this work.

14

Chapter 2

POMDP-Based Interaction Basics

2.1 Motivation

2.1.1 POMDPs in Spoken Dialog Systems

Partially Observable Markov Decision Processes (POMDPs) have gained recent pop-

ularity in the application of spoken dialog systems[23, 3, 22, 24, 5]. POMDPs provide

several advantages in such systems, including modeling uncertainty in user speech

and intention as well as reducing the number of parameters that need to be tuned to

produce useful behavior. (This work assumes the reader is familiar with POMDPs.

Below, we illustrate not POMDPs in general, but a specific application of POMDPs

to an interactive spoken dialog problem. For a review of POMDPs, please see [9].)

First of all, interacting with a user via speech is a natural source of uncertainty

because decoding speech is imperfect. Thus, the act of recording and interpreting

speech alone means there is uncertainty in what the user said. POMDPs can natu-

rally model this uncertainty in their observation function by assigning a probability

distribution over possible observations when input is received from the user. This

probability can be tuned based on information about the accuracy of the speech de-

coder. For example, if given a certain vocabulary, the decoder reports the spoken

word with an accuracy of 80%, the POMDP model can give observations that involve

speech a probability of 0.8 of being correct, distributing the remaining 0.2 over other

15

observations. (How the remaining probability is distributed might depend on other

aspects of the model.)

In addition to uncertainty about what the user in a spoken dialog system actually

said, there is an inherent uncertainty in what the user actually wants, or the “state”

of the user. POMDPs can model this naturally as well by maintaining a list of

all possible user intentions as states in the POMDP, and assuming that the user

maintains exactly one state. The system does not know which state this is, and it is

the ‘goal’ of the system to find out the correct state. To do so, the system will keep a

probability distribution over all of the possible states. This is called the belief. As the

system receives more information about its environment–for example, by decoding

voice commands provided by the user–it will update its belief distribution to take

into account the new data. Once it is confident enough in one of its states, which is

to say that the belief of that state has crossed a certain threshold, the system will

‘decide’ that it knows the user’s intent and proceed accordingly.

Perhaps the true power of the POMDPs use in spoken dialog systems comes in

designing these thresholds. This is because one does not have to set the thresholds

directly; they are set implicitly as part of the reward function of the POMDP. In

the reward function, one can specify how much the system should be ‘rewarded’

or ‘penalized’ for choosing certain actions depending on the true state. For example,

taking some action that matches the user’s intentions would receive a positive reward,

whereas taking an action that does not align with the user’s desires would yield

a negative reward. If there is an action that queries the user in an attempt to

gather more data, this might receive a slightly negative reward; the system gains the

advantage of receiving more data, but the small penalty for doing so discourages it

from asking questions forever.

By tuning these reward values, we have more coarse-grained parameters through

which we can control the behavior of our system. Solving the POMDP produces

a policy that the interactive system will follow that dictates the thresholds in its

belief distribution. For example, if the penalty for querying the user was low, and the

penalty for taking a ‘wrong’ action was high, the resulting policy would encourage the

16

system to ask many questions of the user in order to be very ‘sure’ of its underlying

state before taking a ‘deciding’ action. Conversely, charging the system a high penalty

for querying the user would result in lower thresholds and a system that ‘gambles,’

making ‘decision’ actions after fewer queries.

2.1.2 Incorporating Sensor Data

We were interested in an interactive system which included not only speech input from

the user, but also other sensor inputs. Specifically, we wanted to use an Aldebaran

NAO, a humanoid robot that includes simple speech recognition and text-to-speech

capabilities as well as additional sensors, including pressure sensors from its joints,

sonar data, vision data, and more. We were interested in incorporating additional

sensor data because it expands the opportunities for user interaction by incorporating

additional aspects of the environment, which will presumably be common to the robot

and the user.

The choice of a POMDP model easily allows for the incorporation of sensor data

into a spoken dialog system: reading from sensors can be classified as additional

actions; the sensor data that is received are used as observations; and the underlying

states of the system can be modified to include both user goals and properties of the

environment. The intersection of these spaces, which includes the user, robot, and

their environment, provides a wide range of possible tasks, some of which we began

to explore in this project.

2.2 Tasks

2.2.1 The “Voicemail” problem

The first task we addressed was a modified version of the classic POMDP problem,

the “Tiger Room Problem,” as described in [23] as an adaptation of this problem to

the domain of a spoken dialog system. The problem approximates a voicemail system

in which the user is attempting to either ‘save’ or ‘delete’ a message, and the system

17

attempts to determine which by querying the user with the ask action before making

a decision to either save or delete the message.

For this task, the goal was to recreate the dialog as outlined in [23] but with a

real-time interactive system using the NAO. To begin, this would involve integrating

several foundational pieces of a system that uses POMDPs, including:

1. specifying the problem as a POMDP environment

2. integrating a POMDP solver to generate a policy for the specified POMDP

In order to bring the POMDP environment and policy to life, there were several

other components that would need construction, including:

1. writing a parser to load a POMDP file[2] into our working language (Python)

2. writing a parser to load a generated POMDP policy file into Python

3. building an interactive system which utilizes the POMDP environment and

policy, notably in choosing optimal actions and updating the belief as data is

received

4. integrating NAO speech recognition (input) and text-to-speech (output)

2.2.2 Incorporating Sensor Data

The next task we addressed was to construct a POMDP problem similar to the

“Voicemail” problem but that would incorporate sensor data from the NAO. We

wanted to make a problem where the optimal policy would involve the system choosing

some combination of user input as well as sensor input, depending on the belief.

The goal was that this behavior would ‘fall out’ of the POMDP definition, so to

speak, simply by adjusting the reward function, and not by hardcoding threshold

values. In this we hoped a POMDP would be effective in generating interactive

policies without too much fine-tuning.

18

2.3 Results

2.3.1 The “Voicemail” problem

We were able to successfully recreate the interaction as specified in [23], matching the

reported belief distribution when we took the same path in the dialog. We were able

to use our own speech as input to the NAO, and it would respond with synthesized

speech output. We used APPL[11] as our POMDP solver, and implemented the other

components mentioned in the task.

2.3.2 Incorporating Sensor Data

We created a POMDP environment where the goal was to determine whether an

object is ‘heavy’ or ‘light’. There are two states: {heavy, light}. They are both

assumed to be equally likely, so the prior belief over these states is set uniformly

to [0.5, 0.5]. There are four actions: {askHuman, pickupObject, outputHeavy,

outputLight}. The actions askHuman and pickupObject acquire input from the

user and sensors, respectively, and the final two actions are “terminal” in that they

end the current interactive round. From asking the user, two observations are possi-

ble: hearHeavy and hearLight. The sensors are also discretized into a binary input,

so its observations may be one of feelHeavy or feelLight.

For the observation and reward functions, we wished to model the scenario that

asking a user is cheap but not very reliable, whereas picking up the object is expensive

but also quite accurate. We assigned humans an accuracy of 60% with a penalty of

-1, and the sensors an accuracy of 80% with a penalty of -3. The reward for choosing

correctly was 10, while the penalty for choosing incorrectly was -30.

The thresholds that were generated from the optimal policy are as follows:

The hand-tuning required to generate this policy was minimal. We tried two

different reward values1 before coming up with an environment whose policy took

1We had originally set the pickupObject action a penalty of -2, and an incorrect output a penalty
of -20.

19

heavy
b = (1,0)

outputHeavy

}

askHuman

pickupObject } pickupObject

askHuman askHuman

}

outputLight

light
b = (0,1)

Figure 2-1: The learned belief function for the “light” vs “heavy” POMDP problem.

Figure 2-2: The observation function p(o′|a, s′) for our “light” vs “heavy” POMDP
problem.

Figure 2-3: The transition function p(s′|a, s) for our “light” vs “heavy” POMDP
problem.

20

Figure 2-4: The reward function r(a, s) for our “light” vs “heavy” POMDP problem.

each action at least at some point in the belief space.

On the other hand, the policy itself provides more complex behavior. We can see

that this policy prefers to take the cheaper askHuman action in two cases. First, when

it has a uniform belief over its states, it needs at least one human query and one

sensor query to decide with confidence; two askHumans would not be sufficient, and

two pickupObjects would have a higher penalty. Secondly, it will execute askHuman

when it is almost sure of its state, but needs a slight boost; here, the lower cost of

askHuman is preferable. The pickupObject action is taken only when this action, if

confirming the belief that the system currently prefers, will push it over the threshold

to one output.2

Though the values we chose here were arbitrary, by taking measurements of real-

world values in such interactions—for example, the delay when gathering each type

of data, the time wasted when a wrong answer is chosen, or the accuracy of humans

in classifying objects—optimal policies that emerged would satisfy actual needs.

2These hypotheses about the behavior of the agent using this policy were confirmed by manually
testing the interactive system with this environment and policy.

21

22

Chapter 3

POMDP State Estimation

3.1 Task

The task for this section of the thesis work was to design and implement a general

approach to allow the NAO to discover state. There were two main components that

made this interesting:

1. The “state” of the NAO should be with respect to multiple properties, hence-

forth called state dimensions.

2. The observations the NAO receives should be from multiple sources—including

natural language input—henceforth called observation categories.

As an example, the NAO might be trying to discover how heavy an object is that

it is holding and how bright the room is that it is in (here it would have 2 state

dimensions). Its inputs could be words input from the user, which would provide

evidence for both state dimensions, as well as weight sensor and light sensor readings,

which would only provide evidence for their respective state dimensions. Hence, there

would be 3 observation categories.

23

Figure 3-1: A conceptual image of successive states encoding all words in the vocabu-
lary (4 of them) with possible sensor mappings in sensor space (binary valued). Note
that here we have pre-determined which words map to which sensors; removing this
assumption leads to more states.

3.2 First Approach: State Space Learning

3.2.1 Design

The first model we designed was one where learning would be defined as discovering

the correct grounding (meaning) for all words in the vocabulary. These groundings

would be in terms of all state dimensions additional to natural language input, so

observations from all observation categories would be necessary to identify the correct

state and ‘learn’ the meaning of all words in the vocabulary. See Figure 3-1 for a

visual aid.

3.2.2 Implementation

As proof-of-concept, we created by hand POMDP environments that used this ap-

proach. The state list from one such environment is listed in Figure 3-2, and the

observations and observation function for the information gathering action is shown

in Figure 3-3.

3.2.3 Results

This approach provided unsatisfying results in several respects:

24

Figure 3-2: The actions of a ‘state space learning’ POMDP environment, with addi-
tional formatting for clarity. A single entry, for example, vHeavy-oW3 vLight-oW2,
encodes the idea that the vocabulary word heavy is associated with the weight sensor
value 3, while the word light is associated with the weight sensor value 2

Figure 3-3: The observations and sample observation function for a ‘state space learn-
ing’ POMDP environment, with additional formatting for clarity. Observations come
in (vocabulary word, sensor1, sensor2, ..., sensorn) tuples; in this case we have only
one sensor. The observation function has states (Figure 3-2) as rows and observa-
tions as columns, and serves to weight states in a way that matches with whichever
observation came in. States that match the given observation are given observation
probability 0.4, whereas those that don’t are given probability 0.05. Note that rows’
probabilities must sum to 1.

1. The state space grows too quickly. If we assume we know which vocabulary

words correspond to which state dimensions, then the size of the state space is

O(|Sd||D||Vd|), where we have D state dimensions and Sd and Vd are the sets of

sub-states and vocabulary words associated with state dimension d, respectively

. If we remove this assumption, then there are |S||V | states, where S and V are

the sets of all state dimensions and vocabulary words, respectively. The APPL

POMDP solver struggled with only ∼ 10 states in this toy scenario; growing

the vocabulary size would be nearly unthinkable.

25

2. The interactive program cannot directly address the sparse observation problem

(curse of dimensionality) that comes with a large state space. That is because

the action available to it is getInfo. If it continues to record observations that

do not define some state dimension—for example, if the user never talks about

how much weight is on the robot—it cannot take any actions to fill in that

space.

After several attempts to use the APPL POMDP solver to generate policies for

environments framed by this approach, it became apparent that heavier machinery

would be needed before this approach would become feasable. There existed a very

simple underlying logic to the state space, but such a logic was not captured by the

“pure” POMDP environment. Instead, these environments appared to the solver as

large and increasingly-intractable problems. We decided to begin a different approach

to address this task, which we will call here the ‘generative approach.’

3.3 Second Approach: Generative Approach

3.3.1 Design

Instead of encoding language to sensor mappings in the states, this approach assumes

that the robot itself is in a single hidden state. This state then is the ‘source’ (it

‘generates’) observations, which we assume are conditionally independent given the

state. See Figure 3-4 for a graphical model of this.

One key factor here is that because of our conditional independence assumption,

we can write p(word, sensor1, sensor2, ..., sensorn|state) = p(word|state)p(sensor1|state)·

· · p(sensorn|state). Now, if we collect probabilities of different words and sensors for

a state, we can then combine them to estimate the joint probability of the state.

26

Figure 3-4: The generative model—a Naive Bayes. The true state s is unknown
and fixed, and is discovered by getting observations through successive rounds of the
POMDP.

3.3.2 Implementation

Formulation

To realize this approach, we began by writing POMDP environments by hand and

manually computing probabilities and weights in order to devise a general scheme for

how this approach could be implemented. An example of these calculations appears

in Figure 3-5. Through this, we nailed down concrete rules for environments to

implement this approach:

1. A state must be a cross product over state dimensions in the sense that one state

must contain one “choice” per state dimension. A human interacting with this

system would need to be able to describe any of the available state dimensions

that the agent is in, so the state representation must accommodate that. For

example, if our state dimensions represent room temperature and wall color,

and the agent is in a cold room with green walls, the state must represent both

of these properties rather than just one of them. This means that if there are s

substates per state dimension, and there are d state dimensions, then there are

sd states in the system.

2. Some observation categories will provide information over multiple state dimen-

sions, and so must be normalized.

3. One action can be used to get input for each state dimension, giving the agent

27

power over which state dimensions are updated in each time step by which

action it choses.

POMDP Generator

Computing the observation matrices for multiple state dimensions and observation

categories was very tedious, so we took the rules that we developed above and specified

a JSON schema for which we could enter probability distributions over observation

categories with respect to their relevant state dimension, which, along with some

basic information about rewards and state discretizations, fully specified an instance

of a problem in this approach given the assumptions of this model. We then wrote a

POMDP generator which loads a JSON that follows this schema, extracts sub-states

and observation classes along with the probability distributions, and creates a valid

(solvable by published solvers) POMDP environment.

This POMDP generator makes up the core of our work on this approach. It

hardcodes the model’s details (such as having only one true state that doesn’t change)

and allows for concise entering of real (measured) data into a setting for this problem.

Its two most important capabilities are with regard to the general requirements of

this approach:

• Supports any number of state dimensions, and any number of substates per state

dimension (specified by an integer). The full list of states is auto-generated.

• Supports and number of observation categories, any number of observations per

observation category, and observations can span any number of state dimensions,

even within the same observation category.

3.3.3 Results

Though this approach still leads to exponentially-sized state spaces, it is exponential

in dimensions rather than vocabulary, which is much more reasonable. The APPL

POMDP solver gives slow but usable performance for computing policies for these

environments when done offline.

28

Figure 3-5: This shows an example computation for one observation category (v:
“vocabulary”, i.e. natural language input) for the state w1 r0, which means that the
w state dimension is in discretization level (sub-state) 1, and the r state dimension
is in discretization level (sub-state) 0. Here, the first three vocabulary words v0-v2

describe the w substate, and the last two v3-v4 describe the r substate. Because
this observation category spans multiple state dimensions, the probabilities must be
normalized to sum to 1 for any given state, as states are a combination of one choice
per state dimension. We currently perform unweighted normalization for simplicity.

3.4 Application

As a proof-of-concept for our second approach, we collected real data from the NAOs

sensors, discretized them and extracted the probability distributions, framed them

in our JSON schema, and generated and solved POMDP environments using them.

Each of these steps is described in detail in the following sub sections.

3.4.1 Data collection

We collected data from the NAO robot using two different state dimensions: weight,

and darkness of room. Figure 3-6 shows some of our test setups.

3.4.2 Data processing and discretization

The next step was to visualize the results of our data collection in order to determine

appropriate locations to discretize the continuous space. Note that this process could

be done by training a classifier on this data and then determining thresholds, but the

data was separable and low dimensional enough that graphing and then eyeballing

works for what we hope to achieve. The weight measurements are shown in Figure

3-7, and the darkness measurements are in Figure 3-8.

29

Figure 3-6: Left: Collecting weight data for the NAO without any load on it, and
light data for a bright room. Center: Collecting weight data for the NAO holding a
box filled with packing peanuts. Right: Collecting light data for the NAO wearing a
helmet.

Figure 3-7: We tested the NAO with no weight (red), carrying a box (blue), and
wearing a helmet (green), with 500 data points per sample. There are four foot
sensors per foot on the NAO; in the left graph, we collected data from each foot
(you’ll notice the NAO is very unbalanced), and in the right graph, we collected the
total weight. Using the 1D data, we can eyeball support vector machines and create
classification boundaries at around 3.23 and 3.43 Kg

30

Figure 3-8: The light measurement data is also separable. We modified the environ-
ment in two ways: brightness of ambient lighting (artificial lights and blinds), and
the NAO wearing the helmet or not. We gather data for all combinations of these
and collected 500 data points for each type. We are left with four linearly separable
chunks, and can identify where to draw classification lines.

3.4.3 Entry in JSON Spec File

At this point, we are ready to create the JSON spec file that specifies this environment.

We will have to make some decisions about our vocabulary how we want to represent

error probability margins, and then the rest can be encoded directly.

In the interest of space, we will not reproduce the entire JSON spec and generated

POMDP file here. However, as a short example, we will provide the listings for the

encoding of states and resulting generations.

For the values that we measured, there are 3 different weight ‘states’ within the

weight state dimension, and 4 different light states within the darkness state dimen-

sion. This would be listed as follows in the JSON file:

1 "dimensions": [

2 {

3 "name": "weight",

31

4 "short": "w",

5 "number": 3

6 },

7 {

8 "name": "darkness",

9 "short": "d",

10 "number": 4

11 }

12]

An observation specifies the state dimension to which it is providing data for, its

name (this is not used in POMDP generation; it’s for the interaction code to recognize

it), and an array of values over the possible sub-states of the state dimension. For

example, if the natural language observation category had the word “light,” it might

be listed as follows:

1 "observations": [

2 {"assoc": "w", "name": "light", "values": [0.5, 0.25, 0

.1]},

3 ...

4]

3.4.4 Generated POMDP File

To avoid listing the entire generated POMDP file, we will continue with the above

example and list the generated states:

1 states: w0_d0 w0_d1 w0_d2 w0_d3

2 w1_d0 w1_d1 w1_d2 w1_d3

3 w2_d0 w2_d1 w2_d2 w2_d3

Here we see the 3 weight sub-states and 4 darkness sub-states have been combined

to form 12 possible states.

32

The observation function generated takes the specified JSON observations and

maps and normalizes them to influence the generated states whose sub-states they

map to. Here is a sample of what a generated observation function might look like:

1 O: get_word

2 0.075 0.1 0.325 0.35 0.15 0 0 0 0

3 0.075 0.1 0.325 0.1 0.4 0 0 0 0

4 0.25 0.1 0.15 0.35 0.15 0 0 0 0

5 0.25 0.1 0.15 0.1 0.4 0 0 0 0

Here we can tell that the first five observations are words, because the other

observations are zeroed out (note the observation function is for the get word action).

3.4.5 Solved POMDP File

The solver, though slow, generates a reasonable policy (precision < 1.00) in under 10

minutes.

3.5 Conclusions

The task of constructing a generic system by which POMDP state discovery—though

any number of state dimensions and observation categories—can be made through

interaction with natural language seems to be a problem that requires a large number

of states. For someone constructing such environments, this means there are several

ramifications:

1. Policy computation must be done offline. This also means that the addition

of, say, novel words to the vocabulary, cannot happen in an online setting if it

means resolving the POMDP. Thus, alternate approaches would be necessary.

2. Though the state space may be exponential, thinking about in which dimensions

it is exponential can have a large impact on the problem.

33

3. The specification of these environments themselves is tedious and error prone.

It is worth the time and effort to build systems that allow for more specific,

convenient specifications and auto-generate the more generalized POMDP spec-

ification.

A caveat of either approach taken is that we have assumed that the transition

function T in the POMDP is stationary. That is, T (s, a) = s with probability 1.0

∀s, a : a is non-final action. In real-world situations it is possible that the environment

is static and the problem can be formulated this way, but in fact the power of the

POMDP is that it allows for encoding a changing environment. The system described

previously can be thought of as a cross product of several “Voicemail” POMDPs—or,

more bluntly, several computationally-expensive decision thresholds.

However, despite the theoretical support of the POMDP for a changing environ-

ment, simply “encoding the state changes” in a POMDP environment is nontrivial

because the probabilities of all possible transition situations must be determined

beforehand. The details of all such situations might be clear once the scenario is un-

folding, but beforehand it is not immediately apparent how to specify an environment

that is both tractable1, useful2, and general3.

These difficulties suggest that an approach which both learns and demonstrates

online may be useful, as a clear separation of the two implies either (a) more infor-

mation must be collected before beginning than is necessarily convenient, or (b) the

“learning” stage must be continually re-entered from the “interactive” stage, which

involves continuously computing policies from the POMDP.

1i.e. keeping the state space small
2i.e. not encoding all transitions in a uniform distribution
3i.e. the robot is not constrained to a pre-determined sequence of interactions

34

Chapter 4

Interactive NAO Experiments:

Learning and Demonstration

4.1 Overview

This chapter outlines work from an interaction-first approach towards language ground-

ing with the NAO. Whereas the previous two chapters focused on formulating and

testing prototypes of models that could be used to model the interaction and statistics

of a system, the focus of the work in this chapter was to look directly at the NAO’s

sensors and see what systems can be built using them.

For more details on these experiments, including annotated videos of the sys-

tems in action, please see the project website at http://sites.google.com/site/

uwaiprojects/.

4.2 Real Time Monitoring System

Preliminary tests showed that some of the NAO’s sensors could begin reading bad

values during certain (seemingly unpredictable) conditions. For example, foot weight

sensors would occasionally begin reading excessively large values, or record the in-

verse of changes that affected them (such as putting a ∼ 0.3 kg object on the NAO

causing a drop in the foot sensor reading of ∼ 0.3 kg). Thus, in order to conduct

35

http://sites.google.com/site/uwaiprojects/
http://sites.google.com/site/uwaiprojects/

experiments with the NAO’s sensors that relied on their accuracy for data collection,

it was necessary to first build a monitoring system in order to tell what its sensors

were measuring during the experiments.

4.2.1 Design 1: Multiprocess, pyplot instances

Because all previous code for modeling (POMDP) and interaction (NAO) work was

done in Python, Python was continued for these experiments. This problem was

fundamentally multi-threaded in nature, because a monitoring system must record

input and display output from many sources, including:

• User input (typing)

• User speech commands (speech recognition)

• Querying multiple robot sensors (foot sensors, sonar readers, ...)

• Activating robot actuators (stand, sit, ...)

• Displaying visualizations of monitored sensors (graphs, numerical readings, ...)

Due to Python’s lack of true threading, Python’s multiprocessing was chosen in-

stead to achieve true concurrency.

Though the NAO’s sensor API supports concurrent access, empirical tests showed

that the NAO’s system uses a single global lock on all of its sensor values, and this

locking mechanism favored allowing one thread (or process) to access it for several

seconds. This was not suitable for a monitoring system in which multiple observers

would query different aspects of the NAO’s state, so locking access to the NAO’s API

was done manually for each Proxy (NAO subsystem interface).

Python’s matplotlib.pyplot[7] library for plotting was used for displaying the

results of monitoring. Given the concurrent nature of the code, and the shared use of

a single library, each observer process is given its own pyplot instance. An outline

of the first system attempt is shown in Figure 4-1.

36

main

+ speech recognition

observer_1

+ query sensor group 1

pyplot figure
instance

pyplot figure
instance

observer_2

+ query sensor group 2

pyplot figure
instance

pyplot figure
instance

...

Figure 4-1: A first attempt at implementing a real-time monitoring system for the
NAO. In the main process, different observer processes are spun up using Python’s
multiprocessing module. Relevant instructions are recording from the main process’
speech recognition module, and multiplexed to the observer processes using Pipes.
Each observer process is responsible for querying one logical group of the NAO’s
sensor values, and then rendering this information in a graph using one or more held
instances of pyplot figure objects.

Unfortunately, this system had a flaw: after all observers correctly queried their

sensors and drew their figures once, on the second round of drawing, a system error

appeared which caused the Python processes to crash. The problem was related to

performing GUI operations on non-main threads running on the Mac OSX system.

Because the Mac was essential at this stage for experimental recording (screen capture,

voice capture, video capture, video editing), I began work on a different system design.

4.2.2 Design 2: Multiprocess observers, single plotter

After the failings of the last system because of non-main threads drawing to the GUI,

I designed a system where each process would again query the state of one group of

the NAO’s sensors, but the observations would be sent back to the main process for

display. The system is outlined in Figure 4-2.

37

main

+ speech recognition

observer_1

+ query sensor group 1

pyplot library

observer_2

+ query sensor group 2
...

Figure 4-2: A second attempt at implementing a real-time monitoring system for the
NAO. In contrast to Figure 4-1, this system uses the additional observer processes
only for querying the NAO’s sensor states, and performs all plotting in the main
thread using calls to the pyplot library.

Though this system avoided the flaw of the first system, it also had a crippling

problem: re-drawing multiple figures on a single thread is a CPU-bound operation.

Once the system attempts to monitor even two sensors, it falls far behind; empirical

tests showed the system running over 10 seconds behind real-time when rendering

three graphs1. The result was unusable for real-time monitoring.

4.2.3 Design 3: Multiprocess, single pyplot

It appeared that the current task was blocked: in order to take reasonable measure-

ments with the NAO’s sensors, we needed a real-time monitoring system that would

be easy to see while standing five or ten feet away, interacting with the NAO. Printing

out a stream of numbers would be too small, and Python’s leading graphing library

was failing: either the system was 10 seconds behind real-time, or it would crash due

to a system-dependent bug.

As a final design, I tried reverting to the first approach of having multiple processes

1Each sensor is shown by a minimum of two graphs: its immediate history plotted as a line graph,
and a larger reading ‘drawn’ as a number.

38

main

+ speech recognition

observer_1

+ query sensor group 1

pyplot
library

reference

...
pyplot library

observer_2

+ query sensor group 2

pyplot
library

reference

Figure 4-3: A third attempt at implementing a real-time monitoring system for the
NAO. This design takes a hybrid approach of Figures 4-1 and 4-2. It performs all
observations and plotting in separate processes to avoid the CPU-bound task of draw-
ing the graphs in a single thread, but it shares a single pyplot instance across all
processes to avoid crashing the system because of GUI/thread-related bugs.

each responsible for drawing the sensors that they monitor. This time, though, I

would try using a single pyplot instance, created in the main process, in hopes that

all processes could share it but the system would believe that all drawing was still

happening as a result of the “main thread.” The design is shown in Figure 4-3.

This system functioned correctly. Because of the shared use of the pyplot library,

the GUI drawing operations did not crash, and because of the use of multiple processes

for plotting, the graphs update in real-time. Because up to two graphs—one sensor—

can be monitored in real-time per thread, the current system running on an eight

core machine should support up to sixteen graphs—eight sensors—which should be

enough to fill all viable screen real estate. An example of six graphs (three plots)

monitoring eleven sensor values in real-time is shown in Figure 4-4.

39

Figure 4-4: A screen capture of the final, working version of the real-time sensor
monitoring system for the NAO. Upper left: Video feed. Bottom left: Foot sensor
readings. Upper right: Sonar readings. Bottom right: Darkness (from camera)
readings.

4.3 Foot Sensor Experiments

4.3.1 Overview

With the monitoring system in place, the first sensor domain that I wished to address

was foot sensor readings because this would be a straightforward way to measure

weight on the NAO. The simple goal of teaching the NAO ‘heavy’ versus ‘light’

through examples would be achievable using just the foot sensors.

I programmed the NAO’s vocabulary to recognize the class label words “heavy”

and “light,” as well as two words to control the flow of the experiment: “predict”

and “done.” I trained a Gaussian Naive Bayes classifier2 using the spoken class labels

with the feature vector consisting purely of the foot sensor readings.

An interaction would run as follows. First, there is a training phase, where the user

2From the Python package scikit-learn [15].

40

places various objects on the NAO’s outstretched arms and says “heavy” or “light” to

provide it training data. When the user is done doing so, the user says “predict,” to

enter the prediction phase of the interaction. Then, the user can load however much

weight she desires on the NAO, and then say “predict” again. The NAO outputs the

most probable explanation (MPE) of its foot sensor readings, speaking the class label

it has the highest belief over in the posterior. The user may change weight and say

“predict” as many times as they wish. When the interaction is over, the user says

“done.”

The video proceedings of this experiment are viewable on the project website3. A

screen capture of this experiment is shown in Figure 4-5.

4.3.2 Results

Given clean data and consistent labeling, this technique works: the Gaussian Naive

Bayes classifier can correctly correlate regions of the sensor space with class labels.

In practice, however, there were several problems:

1. The NAO’s foot sensors are faulty. This simple conclusion was the result

of multiple experiments which I will not detail in this paper. Briefly, there

are several failure modes of the NAO’s sensors, in which they will seemingly

arbitrarily start out at high and incorrect values, slowly raise or lower their

values over time (with no change in the NAO’s stance or weight), read values

opposite to those provided (removing objects increases the weight), provide

varyingly noisy readings (light to severe) in general, and sometimes even jump

to “off the chart” readings after which the NAO must be reset. These issues

pose a problem for reliably collecting data.

2. Gaussian Naive Bayes is “too confident.” Rarely would the classifier be

anything but 100% sure that one class was the correct label, even if the provided

weight was somewhere in the middle of an unseen region between training data4.

3The link is at the beginning of this chapter
4We consider addressing this problem by providing a prior over the variance of the model.

41

Figure 4-5: A screen capture of the experiments run to test the NAO’s foot sensors.
Upper left: The video feed is shown, with the experimenter on the left and the
NAO on the right. The NAO has a winter jacket placed on it to measure its weight
difference, and it is connected on its back by a red Ethernet cable and a black power
cable. Bottom left: the annotation on the video annotates what phase of the
experiment is in progress. Upper right: One graph from the real-time monitoring
system, displaying combined foot sensor readings (there are 8 foot sensors total; this
value is their sum), where the most recent observation is on the right side of the
graph, and the graph ‘moves’ leftwards. Bottom right: Also from the real time
monitoring system, this displays the exact number of the most recent observation of
the sensor in question: the combined foot sensors.

3. The NAO’s motors get “hot.” After one or two minutes of experiments,

the NAO will say “Motor hot,” after which there is a limited time period before

it relaxes the stiffness of all of its joints and falls. After this occurs once, future

experiments have even less time before it happens again.

Despite these issues, the system functioned in general, and the next step was to

broaden the scope and challenge by looking at training more classifiers using more

sensors.

42

4.4 Multi-Class Experiments

4.4.1 Approach

1

x1 x2 x3 ... xm

1

x1 x2 x3 ... xm

1

x1 x2 x3 ... xm

Y1

Y2

Yn

...

Figure 4-6: Training n different binary

classifiers each on the full set of m fea-

tures. We use Naive Bayes to model the

relationship between the human-provided

word and all of the robot’s sensor features.

Having achieved success with the NAO

predicting “heavy” or “light” based on

the single value sum of foot sensor

weights, our next goal was to expand this

model to include more antonym word

pairs, as well as more input sensors.

A simple approach would be to train

n different classifiers by feeding in the

relevant sensor data to the classifier. So,

for example, the “heavy” versus “light”

classifier would be given only foot sensor

data, the “bright” versus “dark” classi-

fier would be given only brightness mea-

surement data, and so on.

However, this is not as interesting as

a scenario where the robot could actually

determine which sensors were relevant

for each word description pair. In such

a setup, each classifier would be given

the full range of sensor data whenever a

training instance is recorded, and would

need to learn to weight relevant features

higher. This is the approach that was

taken.

43

4.4.2 Method

To do this, n different Naive Bayes classifiers were to be trained in each interaction,

one for each word pair. All m sensor features (X) along with the truth (Y) are

provided to a classifier each time a training instance that is is relevant to the classifier

is given. A training instance is relevant to a classifier if it contains one of the two words

relevant to the classifier. For example, when “light” is said, the values Y = light

and X = x1, x2, ..., xm is given to the classifier which determines “light” vs “dark”,

where xi is the value of the ith feature extracted from the robot’s sensors. A visual

representation of this is given in Figure 4-6.

For our first trial of this technique we used n = 3, where the three classifiers were:

1. “heavy” vs “light”

2. “bright” vs “dark”

3. “near” vs “far”

For the features, we used m = 6, where the six features were:

1. The sum of the four weight sensors on the left foot

2. The sum of the four weight sensors on the right foot

3. The sum of 1. and 2.

4. The left sonar distance reading

5. The right sonar distance reading

6. The darkness level reading from the camera

4.4.3 Results

At the time of writing, we have performed several preliminary experiments using the

outlined approach and method, and have seen moderate success.

44

Given that each classifier is given no prior information about its relevant features,

it is important to provide training data that sufficiently covers the feature space so

as to dispel fallacious learned correlations. For example, if “heavy” is always trained

by being near the robot, it might pick up the proximity of the experimenter with

its sonar sensors. In that case, “heavy” examples without a sonar impedance are

necessary for accurate learning.

The problem of Naive Bayes classifiers always being 100% sure of the predicted

category lingers. We have yet to experiment with seeding the variance of the model

to be higher in order to force more uncertain predictions, which would seem more

correctly Bayesian.

For our immediate future work, we would like to try adding more sensor features,

such as dominant color or size, and word options to match. Further possibilities are

discussed in the next chapter.

45

46

Chapter 5

Discussion and Extensions

5.1 POMDP

5.1.1 Discussion

The POMDP had a number of strengths and weakness as a component of an integrated

robotic system.

The strengths of the POMDP’s use in an integrated robotic system are largely its

‘advertised’ strengths: that given accurate parameters, a policy emerges that is op-

timal1. Rather than pre-programming behaviors to achieve some goal, the POMDP

allows an agent behave in a way that maximizes long-term expected reward. For

a robotic system with a clear success metric, such as time taken to learn concepts,

number of questions asked, or number of mistakes made, the POMDP will demon-

strate behavior that optimally achieves this goal, rather than requiring the designers

to hand engineer the behavior. As a side effect, the POMDP forces the designer to

consider such success metrics and precisely define them, rather than simply guess at

desired behavior. Put another way, the POMDP creates a minimum restriction on

the formality of a system, which has the benefit of allowing optimal solutions, as well

as benefits that come with any formal specification, such as the precision and clarity

of all parameters.

1Or near-optimal, for point-based solvers.

47

With that said, using the POMDP in an integrated robotic system does have

its drawbacks. When developing a system that is expected to demonstrate certain

interesting or useful behavior, the true success metric of the system is not a goal-based

reward but rather the behavior. Thus, the designers must craft reward functions that,

when a policy is solved, encourage the desired behavior in the robot, which is the kind

of reverse engineering that the POMDP was meant to solve in the first place. If a

clear success metric is, for example, “seconds taken to learn a concept,” and the

time of all robot actions are measured and values are set in the reward function

accordingly, it might be the case that the robot really ought to only perform one

simple, uninteresting action over and over (such as reading from its sensors) in order

to maximize its expected reward. If this is the case, the reward function must then

be tuned so that the robot does other actions, like “ask human.”

Furthermore, other drawbacks of using the POMDP in an integrated robotic sys-

tem come exactly from the formality that provides its benefits. For simple tasks, the

specification of the POMDP format is far more tedious than simply hand-coding the

desired behavior. This is especially true because tools must be developed that parse

and interpret the POMDP’s environment and policy separate from the ‘task’ itself.

As the tasks get more difficult, the POMDP has a greater advantage in generating

complex behavior simply from solving it, but its manual specification becomes more

and more tedious and error-prone. This means that problem-specific, compressed

POMDP specifications must be developed, as well as tools to generate the ‘true’

POMDP specification from these compressed formats. Using the POMDP in a sys-

tem that learns means updating the POMDP, which means writing one or more tools

to convert all data in the reverse direction as well.

Finally, some shortcomings of a POMDP in an integrated robotic system stem

from the nature of the POMDP itself. Logical structure within the state space is

not naturally representable in a POMDP, so a task as simple as “Fly from X to Y”

where X and Y must be determined from n cities, has a potentially massive and

intractable state space size of O(n2). In practice, even state spaces of eight or ten

caused the point-based solver to go from near-instantaneous execution to running for

48

multiple minutes to generate a close-to-optimal policy. Perhaps most importantly,

for the classes of robotic interaction problems that we explored, the behaviors that

emerge from the POMDP’s optimal policies are simple thresholds on the belief space;

information-gathering actions happen at unsure belief states, where more expensive

actions that gather more information are more viable when the confusion over the

true state is high.

5.1.2 Extensions

Several researchers have investigated methods for adapting POMDPs to overcome

difficulties—some of which are presented above—that arise in their use. What follows

is a selection of these methods.

Jason Williams and colleagues have done much work on POMDPs’ use in spoken

dialog systems. In [23], they factor the state space so that each state S is composed

of n sub-states S1...Sn; in particular, they use n = 3 for the user’s intention, previous

utterance, and the dialog history. This allows for a more natural representation

of complicated composite state spaces. In [22] they address large state spaces by

factoring the POMDP state representation so that a belief is held over top-k states

plus a summary state that represents all very unlikely states. They also address logical

structure between states in [24] by partitioning the state space into equivalence classes

based on user intent. Though these techniques were applied to spoken-dialog systems,

the issues they address have natural analogues in many domains of robotics.

POMDPs have been applied in the robotics domain for other purposes than dialog

management. Rosenthall and colleagues use POMDPs in [16, 17] to model human

robot helpers in order to estimate their accuracy and availability, better allowing

mobile robots to judiciously ask for assistance from humans.

Other work [8, 18, 19] has addressed the issue of pre-specifying parameters of

the POMDP. They use Bayesian methods to estimate the transition and observation

functions, learning these parameters from the dynamics of a system. In [4], Finale

Doshi-Velez proposes methods for also learning the POMDP’s reward function and

in [6], she proposes an “Infinite” POMDP that does not require knowledge of the

49

state space and instead models visited states as it goes along, effectively learning the

state space. Doshi-Velez has also addressed the issue of POMDP’s slow solving time

in interactive systems in [5] with an efficient incremental update algorithm, allowing

improvement without long delays in the interaction.

Overall, it is unclear to me whether the use of a POMDP is advantageous in

an integrated robotic system. For smaller problems and more restricted domains,

the cost of developing the infrastructure to integrate a POMDP and specify the

problem in its terms might be higher than its benefit. For larger problems and more

open-ended domains, the intractability of POMDPs is exposed, and more advanced

techniques presented above should be incorporated to account for these difficulties.

With that said, these concerns largely regard engineering cost, which is distinct from

the theoretical usefulness of a POMDP.

5.2 Natural language grounding

5.2.1 Discussion

Whereas the methods in Chapters 2 and 3 focus on scenarios where grounding has

been learned and the robot attempts to ‘discover’ its true state with a POMDP,

the preliminary results presented in Chapter 4 address the question of learning such

groundings.

Our work in this area at the time of writing is in progress, and there are many

directions that could be taken to enhance the performance of the current system as

well as extend its functionality to new domains. Before discussing results from other

authors in the field, the following are some extensions to the current project that we

are considering.

One natural extension is adding more words to the options of each classifier.

For example, in a “heavy” versus “light” classifier, learning groundings for the word

“medium” or the phrase “very heavy” would be a natural extension. This would of

course require more training data during interactions, as well as extending the current

50

speech recognition functionality which operates on single words.

In addition to adding words to existing classifiers, adding new features to the

observation feature vector would open up new avenues for additional dimensions of

observation, such as color and size. Some work could be done to abstract, say, an

image taken from the NAO’s camera to just a dominant color. With these first two

extensions, the NAO’s potential learned vocabulary size would increase significantly

from where it stands.

Several system components could be improved for better interactions. Existing

classifiers or past training data could be saved and restored in future interactions,

allowing the robot to benefit from past interactions and grow its knowledge over

time2. The speech recognition component could be expanded to allow more than

single word utterances, which would allow for significantly more natural interactions

with humans, even via simple language input techniques like template matching.

In addition, the word recognizer could be tuned to reject results below a certain

likelihood threshold3.

Nontrivial expansions of the system would involve changes to the model with

which words are learned altogether. Learning qualifiers such as “very” poses an

interesting task; take, for instance the relationship between “heavy” and “very heavy,”

and conversely, the relationship between “heavy” and “not very heavy.” Removing

the hard-coded structure of the provided vocabulary4 would also give much more

interesting results if the vocabulary could still be successfully learned. We have

considered various approaches for doing this fully-naive learning of words, including

attempting “continuousification” of words (mapping words to real-value numbers)

and learning via dimensionality reduction and clustering.

2It is debatable whether this is currently a good idea given the noise of some of the sensors.
3The speech recognizer currently gives the most likely word whenever it hears a sound, which

could have been a true utterance, or it could have been the shifting of a chair.
4By this, we are referencing the fact that words are currently directed to their relevant classifier

via hard-coded routes in the system.

51

5.2.2 Extensions

Examples from recent published work describe areas of robotic grounded language

acquisition that are relevant to consider when determining future work direction.

What follows is a small sampling of a large body of such work.

Crowdsourcing is emerging as a viable method of data collection for robotics

domains. Stefanie Tellex and colleagues [20] applied crowdsourcing to the domain of

natrual language commands given to a robot by collecting a large corpus of commands

and then applying a probabilistic graphical model over a command by decomposing

it based on its semantic structure.

Asking targeted clarifying questions is another important area of research for

robotic interaction with natural language. Tellex et al. extended the work previously

mentioned in [21] where they propose an information-theoretic strategy for asking

such questions, helping robotic systems to cope with natural language ambiguity and

their limited perception of the environment. Robots asking targeted clarifying ques-

tions is not limited to natural language grounding; for example, Cakmak et al. use

this approach—termed Active Learning—in [1] to assist programming by demonstra-

tion, where a robot is taught actions and then asks questions to recover relevant

characteristics of its training data.

Another vein of research involved in helping robots learn natural language focuses

on gleaning more information out of data collected than just words. In [10], Kollar

and colleagues use a linguistically-motivated framework termed “Logical Semantics

with Perception” that facilitates the interactive learning of language through vision,

gesture, and basic language semantic analysis. They work also with natural language

generation, which as a note of interest also has seen some overlap in work with

dialog management systems [12]. Matuszek et al. have looked at robotic grounded

language acquisition in the navigational domain through supervised learning [14], and

augmenting vision with language to jointly learn a language and perceptive model [13].

I am particularly interested in this domain, where I believe that by utilizing exiting

work in computer vision, a robot can determine a strong prior over words for use in its

52

speech recognition system. Applying this technique might help research where vast

amounts of data manually collected through physical interactions must be thrown

away due to speech recognition errors (e.g. in [10]).

53

54

Bibliography

[1] M. Cakmak and A. L. Thomaz. Designing robot learners that ask good ques-
tions. In Proceedings of the International Conference on Human-Robot Interac-
tion (HRI), 2012.

[2] Anthony R. Cassandra. Tony’s POMDP File Format Description, 1999.
http://www.pomdp.org/pomdp/code/pomdp-file-spec.shtml.

[3] F. Doshi and N. Roy. Efficient model learning for dialog management. In Human-
Robot Interaction (HRI), 2007 2nd ACM/IEEE International Conference, pages
65–72, 2007.

[4] Finale Doshi, Joelle Pineau, and Nicholas Roy. Reinforcement learning with lim-
ited reinforcement: Using bayes risk for active learning in pomdps. In Proceedings
of the 25th international conference on Machine learning, pages 256–263. ACM,
2008.

[5] Finale Doshi and Nicholas Roy. Efficient model learning for dialog management.
In Human-Robot Interaction (HRI), 2007 2nd ACM/IEEE International Con-
ference on, pages 65–72. IEEE, 2007.

[6] Finale Doshi-Velez. The infinite partially observable markov decision process. In
NIPS, 2009.

[7] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

[8] Robin Jaulmes, Joelle Pineau, and Doina Precup. Learning in non-stationary
partially observable markov decision processes. In ECML Workshop, 2005.

[9] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99–134, 1998.

[10] Thomas Kollar, Jayant Krishnamurthy, and Grant Strimel. Toward interactive
grounded language acquisition. 2013.

[11] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Ef-
ficient point-based pomdp planning by approximating optimally reach-
able belief spaces. Proc. Robotics: Science and Systems, 2008.
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/.

55

[12] Oliver Lemon. Learning what to say and how to say it: Joint optimisation of
spoken dialogue management and natural language generation. Computer Speech
& Language, 25(2):210–221, 2011.

[13] Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, and Di-
eter Fox. A joint model of language and perception for grounded attribute learn-
ing. arXiv preprint arXiv:1206.6423, 2012.

[14] Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer, and Dieter Fox. Learning
to parse natural language commands to a robot control system. In Intnl. Symp.
on Experimental Robotics (ISER), 2012.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[16] Stephanie Rosenthal and Manuela Veloso. Modeling humans as observation
providers using pomdps. In RO-MAN, 2011 IEEE, pages 53–58. IEEE, 2011.

[17] Stephanie Rosenthal, Manuela M Veloso, and Anind K Dey. Learning accuracy
and availability of humans who help mobile robots. In AAAI, 2011.

[18] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive pomdps.
In Advances in neural information processing systems, pages 1225–1232, 2007.

[19] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayesian reinforcement
learning in continuous pomdps with application to robot navigation. In Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference on, pages
2845–2851. IEEE, 2008.

[20] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter,
Ashis Gopal Banerjee, Seth J Teller, and Nicholas Roy. Understanding natu-
ral language commands for robotic navigation and mobile manipulation.

[21] Stefanie Tellex, Pratiksha Thaker, Robin Deits, Thomas Kollar, and Nicholas
Roy. Toward information theoretic human-robot dialog. In Robotics: Science
and Systems, 2012.

[22] Jason D Williams, Pascal Poupart, and Steve Young. Factored partially ob-
servable markov decision processes for dialogue management. In 4th Workshop
on Knowledge and Reasoning in Practical Dialog Systems, International Joint
Conference on Artificial Intelligence (IJCAI), pages 76–82, 2005.

[23] Jason D. Williams and Steve Young. Partially observable markov decision pro-
cesses for spoken dialog systems. Computer Speech and Language, 21:393–422,
2007.

56

[24] Steve Young, Jost Schatzmann, Karl Weilhammer, and Hui Ye. The hidden in-
formation state approach to dialog management. In Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 4,
pages IV–149. IEEE, 2007.

57

	Introduction
	POMDP-Based Interaction Basics
	Motivation
	POMDPs in Spoken Dialog Systems
	Incorporating Sensor Data

	Tasks
	The ``Voicemail'' problem
	Incorporating Sensor Data

	Results
	The ``Voicemail'' problem
	Incorporating Sensor Data

	POMDP State Estimation
	Task
	First Approach: State Space Learning
	Design
	Implementation
	Results

	Second Approach: Generative Approach
	Design
	Implementation
	Results

	Application
	Data collection
	Data processing and discretization
	Entry in JSON Spec File
	Generated POMDP File
	Solved POMDP File

	Conclusions

	Interactive NAO Experiments: Learning and Demonstration
	Overview
	Real Time Monitoring System
	Design 1: Multiprocess, pyplot instances
	Design 2: Multiprocess observers, single plotter
	Design 3: Multiprocess, single pyplot

	Foot Sensor Experiments
	Overview
	Results

	Multi-Class Experiments
	Approach
	Method
	Results

	Discussion and Extensions
	POMDP
	Discussion
	Extensions

	Natural language grounding
	Discussion
	Extensions

