
Verification Games Type Systems
Nathaniel Mote

Bachelor's Thesis
December 2013

Abstract:

This paper will summarize the process of creating a Verification Games type system and
document several existing Verification Games type systems. Verification Games is a project that
turns type inference problems into a puzzle game that anyone can play, rather than requiring
experts to insert type information manually. I will document the process of creating a type
system using examples from one that I created. I will also describe several type systems based on
our Trusted type system, and suggest improvements for them.

Introduction
Formal verification can prove the absence of certain classes of bugs in a program. One way to
perform verification is to use a type systems with which stronger properties can be obtained than
with those that are ordinarily used in programming. An existing program can be verified by
adding additional type information to indicate certain properties.

Adding the proper type information is a process that typically requires significant effort on the
part of highly skilled, and therefore expensive, programmers. This burden can be eliminated by
using type inference, which works well when the program can be proven correct simply by
adding a set of annotations.

However, when there is no set of annotations that can lead to successful type checking, type
inference fails. This could be because the program truly contains bugs, or it could simply be that
the type system is not expressive enough to prove that the program is correct.

In either case, it is still useful to get a partial set of annotations that results in a minimal number
of type-checking errors. This would allow part of the system to be verified and for the few failure
points to be manually inspected. Ideally, these failure points would indicate the general locations
where true problems may occur.

Verification Games reduces the type inference problem to a puzzle game playable by non-
experts. The Verification Games team believes that human players will be able to leverage their
intuition and produce better incomplete solutions than traditional type inference tools.

When a player produces a solution to the puzzle, his solution can be directly translated back into
a set of annotations. If the solution has no conflicts, it means that once the annotations are
inserted into the original source code, type checking will succeed. If the solution has conflicts, it
means that type checking will fail, but the locations in which it fails should provide insight into
what could go wrong in the program at runtime. Further specifics of the game, and how
constraints are translated into it, are beyond the scope of this paper.1

This paper will focus on the type systems used with Verification Games. First, it will discuss how
to create a type system for use with Verification Games, and then it will summarize the trusted
type systems – a set of type systems that are based on proving that certain values are trustworthy
to be used for some purpose – and suggest improvements for them.

1 Dietl et. al. 2012

Mote 2

Creating a Type System For Use With Verification Games
Verification Games is based on the Checker Inference Framework, which is based on the
Checker Framework.2 As a result, type systems for Verification Games are similar to those for
the Checker Framework, which is thoroughly documented. Where appropriate, I have added
references to the Checker Framework documentation.

This section will describe the development of the non-negative checker, which prevents negative
integers from being used inappropriately. I developed it to better understand the framework. The
non-negative checker is small and self-contained, yet it provides simple examples of several
different types of behaviors that one might want a checker to exhibit. It should be easy to use
these examples to create a more complicated checker. A checker created in the fashion described
will work for type checking, but additional work will be required to enable type inference, and to
translate those problems into a game. Future work could be to write a guide on how to enable
this.

Decide on properties for the type system

The creator of the type system must determine what properties she wishes the type system to
have, and what the type annotations should be to accomplish this. The type system will extend
Java's type system with a set of additional constraints. The additional type information will be
expressed as type annotations that the programmer or an automated tool can insert into the
source code. Because of the specific game mechanics of our Verification Games, a type system
intended for use with Verification Games should have only two type annotations.

The purpose of the non-negative type system is to prevent negative integers from being used
where they will cause errors. Specifically, we will want to require Array and List indices to
be provably non-negative.

For the non-negative type system, we will use two type annotations: @UnknownSign and
@NonNegative. @NonNegative is a subtype of @UnknownSign. This implies that
@NonNegative int is a subtype of @UnknownSign int.

The non-negative checker will have the following properties:
• All normal subtyping properties .
• ints passed to List.get() must be @NonNegative.
• Array indices must be @NonNegative .
• @NonNegative int + @NonNegative int ==> @NonNegative int
• @NonNegative int * @NonNegative int ==> @NonNegative int
• @NonNegative int / @NonNegative int ==> @NonNegative int

(division by zero is a separate problem)

2 Papi et. al – http://types.cs.washington.edu/checker-framework/

Mote 3

http://types.cs.washington.edu/checker-framework/

The non-negative type system will not account for integer overflow, nor will it work with other
numeric types such as long or float.

Create the qualifiers for the type system

Follow the directions in the Checker Framework manual3 to create the qualifiers. This is a simple
declarative process that defines some basic properties about the annotations, such as:

• The subtyping relationships
• The default annotation to be applied to variables implicitly
• Which annotation to apply to literals of different types (if different from the default

annotation)

The annotations should be defined in the <checkername>.quals package, where “quals”
stands for qualifiers.

The qualifier definitions for the non-negative checker are below. These are in the
nonnegative.quals package.

@TypeQualifier
@SubtypeOf({})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@DefaultQualifierInHierarchy
public @interface UnknownSign { }

@UnknownSign is a type qualifier, with no supertypes. It can be used wherever types are
written, and if a type is not annotated, it is assumed to be an @UnknownSign.

@TypeQualifier
@SubtypeOf(UnknownSign.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface NonNegative { }

@NonNegative is a subtype of @UnknownSign.

Create a JDK Stub file

A stub file allows a type system author or user to specify type annotations that a method
signature should have without modifying the method itself. In particular, most practical type
systems should include a JDK stub file specifying annotations for JDK methods. Stub files are
also useful when verifying real-world code that makes heavy use of libraries. The stub file
format is specified in the Checker Framework manual.4

3 http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#writing-a-checker
4 http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#stub-format

Mote 4

http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#stub-format
http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#writing-a-checker

The non-negative checker includes a stub file. This is how we implement the property that the
index passed to List.get() must be @NonNegative. The relevant part of the stub file is
shown below:

interface List<E> {
 public E get(@NonNegative int index);
}

We could enforce more constraints, such as requiring that the index passed to List.set()
also be @NonNegative, but this is sufficient to demonstrate the use of a stub file.

Create a Checker class

A checker class contains boilerplate code expressing basic information about a type system.

It should extend games.GameChecker, since we intend to use it in a game. The
GameChecker provides some behavior common to all game type systems.

It is useful to create fields, of type AnnotationMirror, corresponding to the annotations in a
type system. An AnnotationMirror is the compiler's representation of an annotation.5 To
get an AnnotationMirror from the class literal for an annotation, you could write:

javacutils.AnnotationUtils.fromClass(processingEnv.getElementUti
ls(), <annotation class literal>)

The class should override the initChecker() method and set these fields within it.

An AnnotatedTypeMirror6 is the JSR-308 compiler's representation for a type, including
its annotations. It is based on the standard compiler's TypeMirror,7 which represents a type.

Other methods to override:
• createInferenceVisitor()

• Return the visitor for the type checker (see the next section). In the non-negative
checker, this returns an instance of NonNegativeVisitor.

• needsAnnotation(AnnotatedTypeMirror)
• Used for inference. For type-checking only, return false.

• defaultQualifier()
• Return the AnnotationMirror for the default qualifier.

• defaultQualifier(AnnotatedTypeMirror)
• Allows for fine-grained control over the qualifier that a type is considered to have

5 http://docs.oracle.com/javase/7/docs/api/javax/lang/model/element/AnnotationMirror.html
6 http://types.cs.washington.edu/checker-framework/current/api/checkers/types/AnnotatedTypeMirror.html
7 http://docs.oracle.com/javase/7/docs/api/javax/lang/model/type/TypeMirror.html

Mote 5

http://docs.oracle.com/javase/7/docs/api/javax/lang/model/type/TypeMirror.html
http://types.cs.washington.edu/checker-framework/current/api/checkers/types/AnnotatedTypeMirror.html
http://docs.oracle.com/javase/7/docs/api/javax/lang/model/element/AnnotationMirror.html

if none is written explicitly. For most cases, including the non-negative checker, it
is sufficient to return the default qualifier.

• selfQualifier()
• This is currently unused, but it still must be overridden for the checker to compile.

Returning the default qualifier is fine.
• withCombineConstraints()

• This is also currently unused. Simply return false.

Create a Visitor class

The visitor class contains a little bit more configuration boilerplate, and defines any special
requirements that your type system introduces. For example, in the NonNegativeVisitor,
the requirement that array indices be @NonNegative is enforced.

The visitor class should extend games.GameVisitor, with the checker class as a type
parameter. This will make the visitor an indirect subclass of the Checker Framework's
SourceVisitor.8

Methods:
• Constructor

• Three arguments: <your checker class> checker,
InferenceChecker ichecker, boolean infer

• You must provide these arguments to the superclass constructor. The first makes
your checker available to the type-checking code. The second two are for
inference, and when instantiating the visitor, you may pass in null and false
for these.

• createRealTypeFactory()
• Return a new instance of your AnnotatedTypeFactory, which will be

defined below. This allows the type-checking code to make use of your
AnnotatedTypeFactory.

• Any visitor methods9 you must override to implement your type system's rules.
• Any AST node that should have additional constraints enforced upon it should

have its visitor method overridden here.
• For any constraint that you wish to enforce, call the mainIsNot method with

the following arguments:
• The AnnotatedTypeMirror for which you would like to assert some

property.
• The AnnotationMirror representing the qualifier that the type must

not have.
• An error message.

8 http://types.cs.washington.edu/checker-framework/current/api/checkers/source/SourceVisitor.html
9 http://types.cs.washington.edu/checker-framework/current/api/checkers/source/SourceVisitor.html

Mote 6

http://types.cs.washington.edu/checker-framework/current/api/checkers/source/SourceVisitor.html
http://types.cs.washington.edu/checker-framework/current/api/checkers/source/SourceVisitor.html

• The AST Tree10 object corresponding to the first argument.

The NonNegativeVisitor overrides visitArrayAccess to enforce the constraint that
Array indices be @NonNegative. The code that enforces this follows:

public Void visitArrayAccess(ArrayAccessTree node, Void p) {
 super.visitArrayAccess(node, p);

 ExpressionTree index = node.getIndex();
 AnnotatedTypeMirror type =
 atypeFactory.getAnnotatedType(index);
 mainIsNot(type, realChecker.UNKNOWN_SIGN,
 "unknown.array.index", index);

 return null;
}

This method gets the AST tree node for the index expression, then gets its corresponding
AnnotatedTypeMirror from the AnnotatedTypeFactory (which we will define
below). Then, it enforces that the index not have the type @UnkownSign.

Create an AnnotatedTypeFactory

The AnnotatedTypeFactory is what the type-checker uses to find the type of a given AST
tree node. Here, you will define any special rules for determining the type of a given tree node.
For example, the non-negative checker automatically assigns the @NonNegative type to any
non-negative integer literals, and also to the addition, multiplication, or division of any two
@NonNegative integers. These properties are implemented in the
NonNegativeAnnotatedTypeFactory.

It should subclass games.GameAnnotatedTypeFactory

Methods:
• Constructor:

• Should take an instance of the checker as a parameter, pass it to the superclass
constructor, and call postInit()

• createTreeAnnotator()
• Should return an instance of a TreeAnnotator (see below).

The TreeAnnotator11 is what visits the AST nodes and applies any annotations to them. By
overriding TreeAnnotator methods, a type system author can implement special rules for

10 http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/tree/package-summary.html
11 http://types.cs.washington.edu/checker-framework/current/api/checkers/types/TreeAnnotator.html

Mote 7

http://types.cs.washington.edu/checker-framework/current/api/checkers/types/TreeAnnotator.html
http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/tree/package-summary.html

what types are assigned to AST nodes. The AnnotatedTypeFactory should include a
subclass of TreeAnnotator as an inner class.

TreeAnnotator Methods:
• Constructor:

• Should call the superclass constructor with the enclosing instance of the
AnnotatedTypeFactory as an argument.

• Visitor methods12

• Required whenever AST nodes need special logic when determining their type.

For the non-negative checker, we override visitLiteral and visitBinary.

visitLiteral is used to apply the @NonNegative annotation to non-negative integer
literals:

public Void visitLiteral(LiteralTree tree, AnnotatedTypeMirror
type) {
 if (tree.getKind() == INT_LITERAL) {
 if ((int) tree.getValue() >= 0) {
 type.addAnnotation(nnChecker.NON_NEGATIVE);
 } else {
 type.addAnnotation(nnChecker.UNKNOWN_SIGN);
 }
 }
 return super.visitLiteral(tree, type);
}

The code inspects the Tree for the literal, and if it is an integer literal, looks at its value. If it is
non-negative, it assigns it the @NonNegative annotation.

In a similar manner, visitBinary is used to apply the @NonNegative annotation to certain
integer arithmetic operations. For example, a @NonNegative int plus a @NonNegative
int is a @NonNegative int.

Trusted Type Systems in Verification Games
One of the goals of the Verification Games project is to protect against a set of security
vulnerabilities. One theme that is common in many of them is unintended information exposure
or the use of potentially malicious data without first sanitizing it.

The trusted type systems are designed to guard against some of the vulnerabilities listed in the

12 http://types.cs.washington.edu/checker-
framework/current/api/checkers/types/TreeAnnotator.html#method.summary

Mote 8

http://types.cs.washington.edu/checker-framework/current/api/checkers/types/TreeAnnotator.html#method.summary
http://types.cs.washington.edu/checker-framework/current/api/checkers/types/TreeAnnotator.html#method.summary

2011 CWE/SANS Top 25 Most Dangerous Software Errors.13 The trusted type systems are a
class of type systems based on two qualifiers: @Trusted and @Untrusted. Routines can
require that their arguments be trusted. Specific type systems have specific meanings for their
trusted and untrusted qualifiers. End users can also use the trusted type system directly, and
choose what they want the qualifiers to represent.

Trusted

The original trusted type system provides functionality common to all trusted type systems,
allowing other type systems to extend it and get its functionality at little cost.

This type system is made up of @Trusted and @Untrusted annotations, where @Trusted
is a subtype of @Untrusted. It has the ordinary subtyping rules and one additional rule: When
the + operator is applied to two @Trusted types, the result is also a @Trusted type. This is
intended for use with Strings, but can also be applied to other types, such as ints. Future
work could be to either extend it to apply to other arithmetic operators, or to restrict it to apply
only to Strings. In its current state, it is inconsistent, though still entirely usable. All of the
trusted type systems implement this behavior, unless otherwise noted. Therefore, trusted type
systems that intend for annotations to be used on types other than Strings also suffer from this
problem.

In this type system, types are assumed to be @Untrusted unless specified otherwise, except
that all literals are @Trusted by default. Unless noted below, each trusted type system assumes
types to be @Untrusted by default, but they have varied rules for what type literals are
considered to be.

This type system includes all of the machinery to allow a type inference problem to be translated
into a game. This means that any new type system that extends trusted will automatically be able
to be gamified. To base a type system on trusted, follow the steps to create a type system above,
but instead of having the checker class extend games.GameChecker, have it extend
trusted.TrustedChecker, and set the UNTRUSTED and TRUSTED
AnnotationMirror constants in the setAnnotations() method. The steps after
creating the checker class are optional, and are only necessary if the default behavior provided by
the trusted type system is insufficient.

Download

The download checker protects against CWE-494: Download of Code Without Integrity Check.14

It uses two qualifiers: @ExternalResource and @VerifiedResource, where
@VerifiedResource is a subtype of @ExternalResource. Routines requiring verified
data can annotate their arguments as @VerifiedResources. It is up to the user to supply a
routine that appropriately sanitizes data, taking an @ExternalResource and returning a

13 http://cwe.mitre.org/top25/index.html#Listing
14 http://cwe.mitre.org/top25/index.html#CWE-494

Mote 9

http://cwe.mitre.org/top25/index.html#CWE-494
http://cwe.mitre.org/top25/index.html#Listing

@VerifiedResource, if such a routine is necessary for the correctness of the program.

A @VerifiedResource could either have been downloaded and passed an integrity check, or
it could have originated within the program. Therefore, all literals are considered to be
@VerifiedResources.

Encoding

The encoding checker protects against CWE-838: Inappropriate Encoding for Output Context.15

It has two qualifiers: @UnknownEncoding and @AppropriateEncoding, where
@AppropriateEncoding is a subtype of @UnknownEncoding. The user must determine
what an appropriate encoding is. This type system is intended to be used only with Strings and
other object types, and is not intended for use with primitive types. null literals are given an
@AppropriateEncoding type.

Encrypted

The encrypted checker protects against CWE-311: Missing Encryption of Sensitive Data.16 It has
two qualifiers: @Plaintext and @Encrypted, where @Encrypted is a subtype of
@Plaintext. A routine that transmits data over the network or saves it to permanent storage
could require that the data it is passed is @Encrypted. null literals are considered
@Encrypted, and String literals are considered @Plaintext by default. This type system
is not intended for use with primitive types.

File type

The file type checker protects against CWE-434: Unrestricted Upload of File with Dangerous
Type.17 It was two qualifiers: @UnknownFileType and @SafeFileType, where
@SafeFileType is a subtype of @UnknownFileType. A web server could require that files
received from clients have a @SafeFileType. null literals are considered to have a
@SafeFileType.

Hard-coded

The hard-coded checker protects against CWE-798: Use of Hard-coded Credentials.18 It has two
qualifiers: @MaybeHardCoded and @NotHardCoded, where @NotHardCoded is a
subtype of @MaybeHardCoded. Routines that send credentials to authenticate with a remote
server, or routines that perform authentication for remote clients, can require that the credentials
are @NotHardCoded. This prevents credentials, whether they are for a remote server or used to
enable behavior in the program itself, from being hard-coded where they could easily be
discovered. All literals except null are considered to be @MaybeHardCoded.

15 http://cwe.mitre.org/data/definitions/838.html
16 http://cwe.mitre.org/top25/index.html#CWE-311
17 http://cwe.mitre.org/top25/index.html#CWE-434
18 http://cwe.mitre.org/top25/index.html#CWE-798

Mote 10

http://cwe.mitre.org/top25/index.html#CWE-798
http://cwe.mitre.org/top25/index.html#CWE-434
http://cwe.mitre.org/top25/index.html#CWE-311
http://cwe.mitre.org/data/definitions/838.html

This type system reuses less of the trusted system's behavior, since it implements a subtly
different rule for concatenation with the + operator. Instead of requiring that both operands be
@NotHardCoded (the @Trusted-like qualifier) for the result to be @NotHardCoded, it is
sufficient for only one of them to be @NotHardCoded.

Internal

The internal checker protects against CWE-209: Information Exposure Through an Error
Message.19 It has two qualifiers: @Internal and @Public, where @Public is a subtype of
@Internal. In this type system, @Public is actually the @Trusted qualifier. It indicates
data that is appropriate to be exposed to the end user. @Types are @Internal by default, and
routines that expose information to the end user should require their arguments to be @Public.
null literals are considered to be @Public.

This type system includes a JDK stub file that requires arguments to the print, println,
and printf methods of PrintStream to be @Public. These annotations cover the most
common places for private information to escape, but additional annotations are necessary to
prevent it entirely. For example, a programmer dedicated to circumventing the type system could
leak private information with the write method, which takes bytes directly.

OS Trusted

The OS Trusted checker protects against CWE-78: Improper Neutralization of Special Elements
used in an OS Command.20 It has two main qualifiers: @OsUntrusted and @OsTrusted,
where @OsTrusted is a subtype of @OsUntrusted. All literals are considered
@OsTrusted.

Unlike other Trusted type systems it contains an additional qualifier, @PolyOsTrusted. This
is a polymorphic type annotation, and it allows a method to indicate that whatever type it
receives, it also returns. A trivial example is the identity function: If it receives an @OsTrusted
argument, it also returns @OsTrusted, but if it receives an @OsUntrusted argument, it also
returns @OsUntrusted. More documentation on polymorphic type annotations is available in
the Checker Framework manual.21

The included JDK stub file requires that Strings passed to OS commands such as exec be
@OsTrusted. It is the responsibility of the user to provide a routine that adequately sanitizes
@OsUntrusted data and returns @OsTrusted data, if such a function is necessary to
perform.

19 http://cwe.mitre.org/data/definitions/209.html
20 http://cwe.mitre.org/top25/index.html#CWE-78
21 http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#qualifier-polymorphism

Mote 11

http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#qualifier-polymorphism
http://cwe.mitre.org/top25/index.html#CWE-78
http://cwe.mitre.org/data/definitions/209.html

Random

The random checker protects against CWE-330: Use of Insufficiently Random Values.22 It has
two qualifiers: @MaybeRandom and @Random, where @Random is a subtype of
@MaybeRandom. Routines that should use a cryptographically secure source of randomness,
such as key generation routines, should require that their source of randomness be Random.

While @MaybeRandom is the default qualifier, the included JDK stub file explicitly annotates
the methods in the java.util.Random class as @MaybeRandom, since they do not use a
cryptographically secure source of randomness. In contrast, the methods in the
java.security.SecureRandom class are annotated as returning Random values.

Salt

The salt checker protects against CWE-759: Use of a One-Way Hash without a Salt.23 It has two
qualifiers: @MaybeHash and @OneWayHashWithSalt, where @OneWayHashWithSalt
is a subtype of @MaybeHash. Routines that write data to a password file can require that their
arguments be a @OneWayHashWithSalt, rather than a plain-text password or a hashed
password that did not use a salt. null literals are considered to be
@OneWayHashWithSalts.

SQL Trusted

The SQL Trusted checker protects against CWE-89: Improper Neutralization of Special
Elements used in an SQL Command.24 It has two qualifiers: @SqlUntrusted and
@SqlTrusted, where @SqlTrusted is a subtype of @SqlUntrusted. Routines that
submit queries to a SQL server should require @SqlTrusted arguments. Literals are
considered @SqlTrusted.

The annotated JDK stub file adds these requirements to the java.sql SQL API.

The user of the type system must provide some way to sanitize @SqlUntrusted input, if such
functionality is necessary.

22 http://cwe.mitre.org/data/definitions/330.html
23 http://cwe.mitre.org/top25/index.html#CWE-759
24 http://cwe.mitre.org/top25/index.html#CWE-89

Mote 12

http://cwe.mitre.org/top25/index.html#CWE-89
http://cwe.mitre.org/top25/index.html#CWE-759
http://cwe.mitre.org/data/definitions/330.html

Conclusion
In this paper, I have documented the process of creating a type checker for use with Verification
Games in type checking mode. I have supplemented this with examples from the non-negative
type checker, which I created. I have also described the trusted type systems, and suggested
improvements to them.

Future Work
Future work could include adding polymorphic annotations for all the trusted type systems.
Currently they only exist for the OS Trusted type system. The addition of polymorphic
annotations to other trusted type systems would improve their expressiveness.

The semantics of the + operator should be considered more thoroughly. The trusted type systems
consider two @Trusted operands to the + operator to be @Trusted. For most trusted type
systems, this works well: The concatenation of two @Trusted Strings should be
@Trusted. It can also be applied to other types, but it is the only operator that currently has
special rules. For consistency, it should either be limited to Strings (with which other
operators cannot be used), or extended to other operators. For example, applying the ^ (XOR)
operator to two @Random ints should result in another @Random int.

While the process of creating a type checker that can potentially be used with Verification Games
has now been documented and is reasonably straightforward, the process of using it for type
inference and using it to create games is poorly documented and more difficult. This is partially
due to the fact that the project is still in its infancy, but it should undoubtedly be improved and
documented.

Mote 13

References
2011 CWE/SANS Top 25 Most Dangerous Software Errors
http://cwe.mitre.org/top25/index.html

“Improving and Extending Verigames”
Stephanie Dietzel
2013

“Practical Pluggable Types for Java”
Matthew M. Papi; Mahmood Ali; Telmo Luis Correa Jr.; Jeff H. Perkins; Michael D. Ernst
ISSTA 2008, Proceedings of the 2008 International Symposium on Software Testing and
Analysis

“Verification Games: Making Verification Fun”
Werner Dietl; Stephanie Dietzel; Michael D. Ernst; Nathaniel Mote; Brian Walker; Seth Cooper;
Timothy Pavlik; Zoran Popović
Proceedings for FTfJP 2012: The 14th Workshop on Formal Techniques for Java- Like Programs
- Co-located with ECOOP 2012 and PLDI 2012, Papers Presented at the Workshop. 2012:42-49.

Mote 14

http://cwe.mitre.org/top25/index.html

	Introduction
	Creating a Type System For Use With Verification Games
	Decide on properties for the type system
	Create the qualifiers for the type system
	Create a JDK Stub file
	Create a Checker class
	Create a Visitor class
	Create an AnnotatedTypeFactory

	Trusted Type Systems in Verification Games
	Trusted
	Download
	Encoding
	Encrypted
	File type
	Hard-coded
	Internal
	OS Trusted
	Random
	Salt
	SQL Trusted

	Conclusion
	Future Work
	References

