


Data Purchase Advisor: Cost-Effective Data Acquisition for
Shared Data Analysis

Martina Unutzer Prasang Upadhyaya

ABSTRACT
A data purchase advisor suggests data purchases to sup-
port a data-driven application. The advisor takes into ac-
count available sources and prices of data to purchase and
the data requirements of the application in suggesting pur-
chases which satisfy the application’s requirements for data
while minimizing purchase cost. We explore possible roles
and uses for such an advisor, both as an offline tool and
as an online service. This includes an examination of how
data can be purchased online and possible formats to spec-
ify data quality and freshness metrics important to the data
sellers and application. The data purchase advisor is essen-
tially a decision-maker, and we explore several strategies for
choosing data purchases when budget is limited. The advi-
sor can prioritize data purchases with an application model
that supports tiers of customers and priorities within the
application. Finally, we examine approximate solutions in
which we purchase data samples or noisy or approximate
values at lower cost to find a balance between data quality
and cost which is useful for the application.

1. INTRODUCTION
Data has always been a valuable commodity, and recently,
it is increasingly available for purchase online. Online data
purchase offers new opportunities for developers, researchers,
and other analysts to create new analysis from an existing
data set, often combining subsets of many different data
sets. With online data sales, data can be bought at a more
fine-grained level rather than a single purchase of the entire
relation. Pricing can become increasingly sophisticated as
we learn how to determine the value of smaller subsets of
the original relation, and purchases can be automated and
made real-time to support applications or online analysis.

Application developers are using this wide availability of
data to build data-intensive applications which purchase data
from several online sources and update it frequently to pro-
vide nearly real-time information and analysis to application
users. Developers must purchase updated data smartly to

provide appropriate information while staying within a bud-
get; a dramatic change in application use or a poor purchas-
ing strategy can make an application either unusable from
a user perspective (lack of data) or too costly for the devel-
oper (too many data purchases).

To help developers leverage the online data market and man-
age data purchases to support their application, we envision
a data purchase advisor. The purchase advisor supports a
data-driven application by accepting constraints about what
data must be purchased and updated and outputting a cost-
efficient purchase schedule. In this report, we make three
contributions to the emerging definition of a purchase advi-
sor: (1) We survey the existing data marketplaces in which a
purchase advisor would operate. (2) We explore the role and
architecture of the data purchase advisor and how to formal-
ize the data requirements of an application. (3) We explore
the impact of sharing and approximate data purchases and
examine how a purchase advisor can use these relaxed data
requirements to purchase data for an application at a lower
cost.

2. SURVEY OF ONLINE DATA MARKET
This section presents a survey of the current data market.
Information is presented from the perspective of an exam-
ple application which performs sentiment analysis on tweets
from the Twitter API. The application must choose from
several datasources based on price, availability, complete-
ness of the dataset, and latency.

2.1 Survey of data sellers
Data is sold in a variety of formats online [1, 3]. Companies
can sell their own data directly, often by providing an API
for developers. An API typically comes with usage restric-
tions. It may limit the frequency of queries or the amount
downloaded in a window of time, particularly for a smaller
free tier of usage. A company may also limit what can be
done with the data it provides; for example, Yelp makes a
limited amount of its data available to application develop-
ers for free, but stipulates that if Yelp data is used in an
application, it must be clearly credited to Yelp and cannot
be aggregated or combined with ratings from other sites[2].

Larger data markets such as the Microsoft Azure Market-
place offer a single place for developers to purchase datasets
from a variety of companies and a unified method of get-
ting the data[6]. Again, limited amounts of data are some-
times available for free, but large quantities must be pur-



chased. The Azure Marketplace provides the purchased data
through an API to query; some other data marketplaces also
provide the data for bulk download. APIs which are queried
directly for small amounts of data allow finely grained pric-
ing based on the amount of data requested; for analytics
which require a large volume of data bulk purchases may be
cheaper and more useful than querying for and purchasing
specific information from a dataset.

The same data set can also be sold under different purchase
models. Twitter data is a good example of this, as it is up-
dated constantly and covers a wide range of topics (based on
keywords present in the tweets). Twitter data is available in
small quantities directly through Twitter APIs, which allow
querying for specific tweets. For larger-scale purchases re-
quired to support a larger application, Twitter uses data re-
seller Gnip[5]. Gnip processes the full Twitter firehose of all
public tweets and packages it into different products. Data
can be purchased as a subscription to a real-time stream of
tweets or a set of saved past tweets that match some crite-
ria. In each case, customers can purchase a broad sample,
such as 10% of the full Twitter firehose, or a more specific
set of tweets, such as all tweets involving a particular user-
name or originating from a certain geographic area. Each of
these purchase options is fitting for a different application.
When choosing what data to purchase for an application
which uses Twitter data, a developer or data purchase advi-
sor must evaluate each option to determine how much data
the application would have to purchase (for example, is it
worth purchasing a 10% sample of the full firehose, or spec-
ifying only a few topics?) and at what price.

2.2 Service-level agreements
When data is purchased as access to an API or a real-time
stream, some data sellers provide SLAs which guarantee
some minimum percentage of uptime and maximum per-
centage of requests resulting in error. If the data seller does
not meet their own guarantees, they may compensate the
customer with credits or refund. APIs also include require-
ments on the customer side describing what the purchaser
may do with the data, such as the Yelp restriction on com-
bining ratings with other sources. Developers must take
SLAs into account when the same data is available for mul-
tiple sources. An advisor should accordingly be able to con-
sider the availability and latency guaranteed by a data seller,
and the developer’s needs and willing to pay for availability
and low latency in any purchase of streaming real-time data.

3. ROLE OF PURCHASE ADVISOR
A simple purchase advisor would be an analytic tool run
by the developer.As input, it accepts an application’s data
use requirements and possible data purchase sources. These
demands can be formalized using metrics such as latency,
statistical accuracy, completeness or representative sample
guarantees, and are described in more detail in the follow-
ing section. The advisor would then output a suggested set
of purchases from these sources which meets, to the extent
possible, the data requirement constraints specified by the
application.

3.1 Static purchase advisor

In the case where data must be purchased only once or where
data can be updated and application use (customer demands
for data) will occur in a predictable, cyclic fashion, a pur-
chase advisor which runs once may be sufficient.

3.1.1 Local prioritization: balancing data demands
within application logic

To provide acceptable service (enough recent data) to cus-
tomers when budget is limited, the advisor must take into
account different priorities within the application. For ex-
ample, consider a mobile application which uses data from
different sources to provide information about restaurants
near the application user. An outdated menu entry or even
a missing restaurant is less likely to cause a problem for
users than outdated hours of operation when referenced by
a customer on their way to a restaurant. The application
developer must specify which information is most important
to keep updated, and the purchase advisor is responsible for
prioritizing frequent update purchases for these attributes
when there is not enough budget to purchase all attributes
used in the application.

3.1.2 Global prioritization: balancing competing cus-
tomer demands

An application may also assign different priorities to dif-
ferent customers. Many applications use a tiered subscrip-
tion model, with some customers using a limited-feature free
version of the application and other customers paying for a
premium version of the same application. These different
groups of customers will typically require overlapping but
not identical data. If providing complete and up-to-date in-
formation to premium customers is an application’s priority
(to maintain a satisfied paying customer base), the purchase
advisor needs to know what data is required by premium
customers and the extent to which it should prioritize these
purchases given a limited budget for data purchases.

3.2 Dynamic and online advisor
While a static advisor may still be a beneficial tool for de-
velopers, the purchase advisor becomes much more useful if
it is run as a service which runs online with the application
and offers near real-time purchase suggestions based on cur-
rent application use and data requirements and potentially
changing data purchase options.
This online purchase advisor might require an analysis pe-
riod, in which it tracks inputs and data use for a while, be-
fore it begins outputting purchase recommendations. This
would allow the advisor to use repetition and patterns in
data use or updates to make smarter predictions and learn
over time. In a case where data purchases are relatively
stable and consistent, the purchase advisor could even make
purchases on behalf of the app, assuming the existence of an
online data purchase mechanism that the advisor can make
use of. If the purchase advisor assumed the role of pur-
chaser as well, with the developer performing only periodic
oversight and checks, the advisor would have to be given
additional constraints. Strict budget constraints would be
used to avoid disastrous overpurchasing, and on the other
hand, constraints on minimum acceptable service for users



(in terms of availability of recent data) would keep service at
a minimum. If these upper and lower limits conflict and the
advisor is unable to choose a set of purchases which satisfy
both, the developer must step in to revise the requirements
or available purchases.

3.3 Devloper role using purchase advisor
The usefulness of the advisor depends largely on the accu-
racy of the inputs it is given. This requires that the appli-
cation developer find effective functions to express the value
of customers, the breakdown of required data by keyword,
and the value of each keyword. For this reason, use of the
advisor could be an iterative process in which the applica-
tion developer tries different configurations of inputs to best
communicate the requirements of the application.
Finally, all this information required by the purchase advi-
sor must be somehow communicated from the application
developer, who understands the purpose and priority of var-
ious data uses in the application, to the purchase advisor,
which must assign a value to each relevant data purchase it
could make. The developer must somehow translate the ap-
plication logic into data requirements that the purchase ad-
visor can understand. For any reasonably large application,
inputting data requirements and potential purchase sources
becomes a complicated and tedious task. A purchase advisor
that could be widely used in practice will therefore require a
standardized format for communicating data requirements
and should eventually provide the ability to automate some
of this work, such as enumerating and evaluating possible
online purchase sources.

3.4 Output
Given constraints about the desired budget, queries, and
data quality, the advisor will explore a large space of possi-
ble solutions. It should output only a few solutions to the
application developer which differ significantly in terms of
queries answered, or quality metrics satisfied[8]. For exam-
ple, within a tier of purchase schedules for the same approx-
imate cost, one purchase schedule may provide good recency
on a small set of queries, while another may provide wide
coverage of queries or larger data sets with better statistical
significance, but with a higher probability of stale data.

4. FORMALIZING DATA PURCHASE RE-
QUIREMENTS: THE DATA SLA

Right now, we do not know of a way to collect information
about an application’s data requirements and options for on-
line data purchases in a standardized format from sellers and
specify it to the advisor. The advisor will be more useful if it
can cover a wide range of applications and data sources. In-
formation about the data being purchased must be specified
in a format that the purchase advisor can understand auto-
matically. We suggest a data SLA (dSLA) which is similar
to an SLA used for purchasing computing services online,
but with a focus on the quality and information content of
the data instead of computing performance.

The dSLA will require a set of standardized metrics which
enable the advisor to compare sources and make decisions on
what data the application developer should purchase auto-

matically. The question of which metrics will prove useful is
still under exploration, but we envision metrics to cover the
following dimensions along which we measure data quality.

4.1 Recency
For data which changes over time, such as traffic data or list-
ings of open restaurants, having a recent version of the data
is important to the application users and developer. This
is one measure of data quality that we will focus on in the
advisor. The advisor can approximate updates as periodic,
and can output a schedule of advised purchases in a time
window to match the periodic updates of the data.

Different data sources are updated with different frequen-
cies. Updates may be on a regular schedule or may be irreg-
ular, and they can affect the entire database or only a single
tuple. To understand how quickly the purchased data will
become stale and inaccurate, the advisor must have infor-
mation about how the data is likely to be updated. Some
of this information can be specified by sellers easily (such as
a daily update to weather data), but a potentially irregular
update schedule may have to be learned by the advisor by
purchasing small samples of data over a long period of time
to build an approximate update model.

Possible ways to measure recency: [9]

1. Binary: The data is marked as current or not current
depending on whether it matches the version in the
seller’s database.

2. Time elapsed: For data which is updated somewhat
regularly and with a known update frequency, the time
elapsed since purchase of the data can provide infor-
mation about how out of date the purchased copy of
the data is.

3. Version number: If updates are tracked by the source
database, each update can be stamped with an increas-
ing version number. The difference between the ver-
sion number of the data in the source and the pur-
chased copy indicates how many changes have been
made to that data since purchase.

We believe measuring recency with version numbers will be
useful. In our current concept of the advisor, we maintain
the requirement that all data in the dataset maintained
by the advisor must come from the same version of the
database: the view maintained by the advisor is a snap-
shot that can be constructed from the original database at
some point in time. Version numbers allow us to determine
how many updates old a database is; depending on the ap-
plication, this distance (number of missed updates) may be
meaningful in telling us how inaccurate the view is compared
to the current version of the database, or it may simply be
a binary signal. Version numbers are also independent of
update rate, allowing comparison between datasets with fre-
quent updates and infrequent updates. However, the best
measure of recency is dependent on the dataset, its update
frequency and patterns, and how it is used by an application.

Recency metrics will also depend on whether data updates



are provided via a push or pull model. When purchasing
a data set or sample online, the transaction is a ’pull’ by
the purchaser, who must request the data. Updates typi-
cally work in a similar fashion: it is up to the purchaser to
request and purchase an updated copy of data purchased.
Data sources could support queries for what version number
of a specific data item is available. This information may
be free, or it may be available only for a cost comparable to
other queries.
Some subscription-based models may provide a push service,
in which updates are provided when they are available in-
stead of when they are requested. This better describes a
streaming service such as a firehose of tweets that continu-
ally provides new information. These pushed updates may
provide the new data, or they may simply be notifications
that updated versions of the data are available for purchase
if desired.

4.2 Sample Quality
In many cases, application developers can only purchase a
small sample of a very large dataset. A small sample may be
sufficient to provide good enough information to application
users, but this depends on the sample that is provided by
the data seller. A data quality specification (SLA) should in-
clude some statistical properties guaranteed about the sam-
ple, such as a maximum standard deviation or a guarantee
that all groups present in a dataset will be represented in
the sample. A data seller could guarantee a sample large
enough to meet certain agreed upon thresholds, or the seller
can use the full database to provide guarantees (with some
certainty level) about the properties of the dataset given the
sample size requested by the purchaser. Different statistics
will be applicable to different data sets and use cases, but
the format for specifying any of these properties over any
data sample offered for purchase can be standardized.

4.3 Granularity
Quality metrics such as recency and statistical properties of
the provided sample can be measured at different granular-
ities, just as data can be purchased at the granularity of
individual tuples, query responses, views, or full datasets.
A data quality SLA must choose an appropriate and mean-
ingful granularity at which to specify this information, de-
pending on the nature of the data being sold.

5. PRIORITIZING CUSTOMERS WITHIN
AN APPLICATION

We first considered a purchase advisor which purchases data
as individual keywords (with a set price to purchase all the
tuples corresponding to that keyword) from a single source.
The purchase advisor must satisfy application/customer data
requirements as much as possible while staying under a spec-
ified budget. In our somewhat simplified model, each cus-
tomer belongs to either the free (low priority) or premium
(higher priority) group of customers. To provide the re-
quested information to each customer using the app, the
application requires a set of keywords specific to that cus-
tomer. Because all customers are using the same applica-
tion, their requests are similar: each customer requests the
same number of keywords, and each keyword is purchased
independently from the same data source. However, not
all customers request the same keywords: each customer

has slightly different requirements, and some keywords are
more popular than other. This corresponds to an application
which provides information based on some user-specific pa-
rameter, such as location. For example, keywords could be
user locations in an application which searches for restau-
rants near the user. Every user could request restaurants
from a different location, but there will be overlap (two
nearby users requesting restaurants can use the same data)
and some locations, such as major cities, will be requested
more frequently than other locations.

While this case is clearly simplistic in its approach to data
purchase, considering only a single homogeneous source from
which all data can be purchased, it allows us to explore how
a purchase advisor should prioritize customers with compet-
ing and overlapping data requests on a limited budget.

5.1 Offline greedy advisor implementation
We implemented a purchase advisor like the one described
above for an offline case which takes a set of customer re-
quests, a set of data available for purchase, and a budget
and chooses a subset of the requested keywords to purchase.
The advisor must define a purchase function which chooses
which keyword to purchase next, given the remaining budget
available and the demand for each keyword. For this basic
offline advisor, purchases are output as a single computation
as requested by the application developer using the advisor.
Such an advisor could be periodically re-run by an applica-
tion developer as the customer base and customer requests,
or the availability of new data sources, changes.

5.2 Purchase criteria
The list of all requested keywords is ranked according to util-
ity, where utility = value - cost of the keyword and the value
of a keyword k is computed as sumc∈Requesters(k)cust val(c)∗
cust key val(c, k), where Requesters(k) are all customers
who request a keyword k, cust val(c) is the value assigned to
customer c by the application, and cust key val(c, k) is the
value assigned to that keyword by the customer requesting
it. The advisor tries to add each keyword to the purchased
set in order of decreasing utility, skipping any keywords it
cannot afford to buy with the budget remaining.

5.3 Data generation
Several sample datasets were generated to test and evaluate
the advisor. These datasets each consist of 1000 customers,
each with a customer value of either 0.8 or 0.2 to represent
premium and free-subscription customers. There are twice
as many free-subscription customers as premium customers
in the sample data. Each customer requests the same num-
ber (20) of the available 100 keywords and assigns each key-
word a uniform, then normalizes the values assigned to the
keywords so each customer assigns a total value of 1.0 (in
this case, a value of 0.5 per keyword). There are 30 data-
sources, each of which sell some subset of the 100 keywords
for a price randomly chosen in the range[0.1, 1.0].

In each dataset, the customer - keyword requests are de-
termined by constructing a bipartite graph matching cus-
tomer nodes to keyword nodes to satisfy the specified de-
gree sequences for each group of nodes. The degrees of the
customer nodes are all uniform, because each customer re-
quests the same number of keywords. The degrees of the



keyword nodes, however, varies. In the first dataset used,
the number of customers requesting each keyword is chosen
randomly from the triangular distribution with minumum
1, maximum 1000, and mode 200 (number of total customer
requests / number of keywords). In a second dataset, the
number of customers requesting each keyword varies accord-
ing to a power law distribution with exponent 2. This mod-
els a scenario in which a few keywords are interesting to
most customers, and there is a long tail of keywords which
are relevant to only a few customers.

5.4 Baseline comparison algorithms
To compare the advisor to a simple decision process with-
out an advisor, we implemented several simple comparison
policies to run over the same sample data. These differ from
the advisor in the algorithm they use to choose the next
keyword to purchase.

• The naive policy randomly shuffles the complete list of
customer requests, then proceeds down the list in or-
der, purchasing whatever keywords it can afford until
it runs out of budget. This is equivalent to randomly
choosing which customer requests to satisfy, or, if re-
quests are sent to an application over a period of time,
satisfying all requests that arrive in the order of ar-
rival until the budget is depleted. Because the list of
requests is used, rather than the de-duplicated list of
requested keywords, keywords requested by more cus-
tomers are still more likely to be purchased.

• The customer importance policy is similar to the naive
policy, but always selects requests from the higher-
value customers first (prioritizes premium customers
and purchases keywords requested by free customers
only if there is enough budget left). This strategy
does not differ dramatically from the naive strategy
in this dataset because free and premium customers
request keywords from the same relatively small set of
keywords.

• The keyword popularity policy purchases as many key-
words as it can afford ordered by the number of cus-
tomers requesting the keyword. This strategy per-
forms well when customer values and the values as-
signed to different keywords by the customers are close
to uniform, but fails to account for the values assigned
to different keywords.

5.5 Performance of greedy algorithm
We tested the advisor and each of the baseline policies over
the two sample datasets (uniform and power law keyword
popularities) and evaluated the resulting purchase lists by
computing the sum of the customer-request values for each
purchased keyword, weighted by the value of each customer.
The same measures were performed for the datasets with
uniform and power-law keyword request distributions:

Figure 1: Performance of purchase policies on gen-
erated dataset with uniform keyword request distri-
bution

Figure 2: Performance of purchase policies on gen-
erated dataset with power-law keyword request dis-
tribution

For very small or very large budgets, all algorithms per-
formed similarly, because either very few customers could
be satisfied or nearly all keywords could be purchased, mak-
ing the decision of which keywords to purchase trivial. For
budgets which covered the minimum cost of approximately
half the keywords, the different policies showed the greatest
difference in performance, suggesting that the usefulness of
a purchase advisor is constrained by the budget available to
the application relative to the data prices.
The purchase set for each policy can be examined in more
detail by measuring the value (out of a possible 1.0 total)
provided to each customer. The following histogram shows
the number of customers provided with each value over the
power law keyword request distributions for a budget of 20:



Figure 3: Histogram of values provided to cus-
tomers. The shape of each policy’s histogram pro-
vides an impression of its fairness in providing rea-
sonably high value to all customers.

This graph provides an approximate sense of how the key-
words purchased are distributed between customers. In com-
parison to the other three policies, the shape of the advisor’s
histogram is skewed toward the high-value end of the graph
(ignoring the 0 and 1.0 buckets, the advisor peaks at a higher
value than most other policies), suggesting that the advisor
prioritizes purchasing keywords that will increase value dras-
tically for a few customers.

6. FAIRNESS IN THE PURCHASE ADVISOR
The advisor described in the previous section uses a very
simplistic model of utility which determines the utility pro-
vided by each keyword in isolation and does not consider
what keywords have already been purchased for different
customers. We developed a second, discounted advisor which
can handle submodular utility functions. This discount ad-
visor takes into account the amount of value a customer
has already received when determining the utility gained by
purchasing an additional keyword, and therefore can priori-
tize keywords which are requested by customers who do not
have many of their keyword purchased yet. Fairness may be
important to application developers interested in retaining a
large customer base and providing a baseline level of accept-
able service to all application users. Adjusting purchases to
prioritize providing similar values to all customers does have
some cost, in terms of the total value purchased, and each
application will prioritize fairness differently depending on
the specific function, data requirements, and customers of
the application. To address this, we implemented a version
of the advisor that considers fairness and prioritizes key-
words requested by customers who have not received many
of their requested keywords yet.

6.1 Measuring discounted value
In computing the total discounted value of a purchase set,
we assign value to each customer based on the number of
keywords purchased. We take the logarithm of the number
of keywords, rather than using the number of keywords di-
rectly, to indicate that, while early increases in the number

of keywords purchased (from 1 keyword to 2) cause signifi-
cant increase in value, the same increase for a customer with
many keywords (from 19 keywords to 20) causes a less sig-
nificant increase in value. The formula used to compute the
total discounted value is:

∑
c∈C

log2(num purchased(c) + 1) ∗ cust val(c)

where C is the set of all customers, cust val(c) is the value as-
signed to the customer by the application and num purchased(c)
is the number of keywords requested by customer c that are
in the purchased set. This particular submodular utility
function is straightforward to compute directly in our advi-
sor for any given set of keywords. However, if a more com-
plex utility function is specified, convex optimization solvers
may be used.

6.2 Discounted value advisor
We implemented a purchase advisor which chooses which
keyword to purchase next from the set of all possible re-
quested keywords by selecting the keyword that provides the
largest possible marginal utility (discounted value - cost).
This advisor is more computationally intensive to run than
the earlier greedy advisor, because for each keyword it pur-
chases, it must compute the discounted value of each set
containing already purchased keywords plus one potential
keyword to purchase. Storing the discounted value of differ-
ent keyword sets as they are computed helps somewhat, but
this advisor is still significantly slower to run.
In evaluating the discounted value advisor, we used the gen-
erated datasets similar to those created for the last advisor.
Some simplifications were made, however: all customers re-
quested the same number of keywords, and the value as-
signed to each customer-keyword request was fixed at (1 /
num-keywords-requested) for each customer. This was done
to reflect the simplification in the discount value advisor
which takes into account only the number of requested key-
words that were purchased, not the value assigned to these
keywords or the total number of keywords requested by a
customer.
We ran the same tests for the total value generated and
include a histogram of value per customer. However, in
this case, for the discounted advisor, the customer value
measures were computed using the log formula described
above and scaled back to a [0, 1] range. The graph belows
shows the distribution of customer values provided by dif-
ferent policies for one budget and dataset:



Figure 4: Distribution of customer values provided
with a budget of 5 on the power-law keyword distri-
bution dataset.

The distribution for each policy follows a somewhat smooth
curve, but peaks occur at different values for each of the
distributions. The naive strategy performs poorly, and the
entire histogram is shifted to the left, indicating uniformly
lower values. The discounted policy histogram is a smooth,
symmetrical curve shifted to the right of the earlier greedy
advisor, demonstrating the discounted advisor’s ability to
maintain the desired curve peaking near the middle of the
distribution while using discounted values instead of the sim-
pler value measure used in the previous section.

7. SAMPLING ADVISOR
The purchase advisor above, which buys individual keywords
in their entirety, is not a good fit for all data purchase by
applications. In many cases, applications can purchase only
a small subset of the data which could be used to answer a
particular question. The sampling advisor uses a different
problem statement to describe a situation in which result tu-
ples for a particular query could be purchased from several
data sources, and an application specifies a number of tuples
matching that query to purchase rather than purchasing the
(potentially very large) result set in its entirety.

A sample of the requested data may be good enough depend-
ing on how the application uses the data: if a user queries
for restaurants near him, it is reasonable to show only 10
well-rated nearby restaurants, which does not require an ex-
haustive list of every single restaurant in their area. This is
an example of an application that requires only the top k
results, or even any k of the possible results. If an approxi-
mation (any k of the results near the top of the full list) is
good enough, we can purchase samples rather than the full
data to provide the requested data without purchasing too
much data.

Purchasing only a selected sample can also be good enough
in aggregates and analytics use cases. For example, when
analyzing data from Twitter, many individual tweets could
mention a particular keyword, but if the data purchased is
used as an aggregate for an application such as sentiment

analysis, it is not necessary or feasible to purchase all tweets
for that keyword. Instead, an application can purchase a
10% sample of tweets matching that keyword or a fixed num-
ber of tweets which match the keyword.

8. PURCHASING APPROXIMATE DATA
In addition to purchasing a sample of the total requested
data to provide a ”good enough” answer, we consider pur-
chasing approximate data, which contains slight inaccuracies
and is correspondingly less expensive. This is a potentially
good fit for aggregate computation and analysis in which no
individual point is visible in the final application or other-
wise crucial to the application; over a large amount of data,
the application may be able to tolerate some inaccuracies.
Similarly, if the user is asking for top-rated restaurants, we
must purchase the data for nearby restaurants and their rat-
ings, but if we are using the rating solely to sort the restau-
rant list, it may be reasonable to purchase only approximate
(for example, slightly old and stale) ratings. Under the as-
sumption that the current true ratings will not be very dif-
ferent, most of the same restaurants will end up in the top
20 positions of the list, producing a reasonably good list to
show to an application user.

8.1 Sample Application with Low-Cost Approx-
imate Purchases

We use a simplified weather application, which reports the
average high temperature over the last week, as an example
of an application which must balance cost and quality while
updating a data set frequently. Acquiring these updates by
purchasing each new daily value as it appears is expensive,
and, depending on the accuracy requirements of the applica-
tion, potentially unnecessary. Using historical weather data
over the past century for Washington state, we demonstrate
the potential for a tiered model of data sales and purchase,
with noisy lower-quality values sold for a lower price and
incorporated successfully into our model application.

We examine the effect of purchasing lower-quality, cheaper
update values instead of the exact values. The cheaper val-
ues have noise added from a uniform random distribution
with range [−r/2, r/2]. This lower-quality data is priced ac-
cording to its variance: the price of the data is 1/v, where
v is the variance of the noise. For the exact data purchases,
we estimate the variance from the significant digits in the
data: all numbers are rounded to integers, so the noise is
akin to a uniform distribution with range 1. As expected,
purchasing values with a larger noise range decreases cost
dramatically, but in the case of our simple average applica-
tion, it does not increase error significantly, measured as the
absolute value of the difference between the average com-
puted with purchased data and the average computed with
the most accurate values available. When buying data with
noise added uniformly in the range [−10, 10] (range 20), the
average high temperature computation is typically about 2
degrees off.



Figure 5: Daily cost and error of purchasing values
with range 5 noise vs exact values.

Figure 6: Daily cost and error of purchasing values
with range 10 noise vs exact values.

Figure 7: Daily cost and error of purchasing values
with range 20 noise vs exact values.

Adopting a blanket policy of purchasing noisier data is very
cost-effective, but in a data analytics application, we may
be able to use other purchased data to improve our esti-
mate. For example, if we have already purchased additional
weather metrics such as precipitation and mininum temper-
ature, we can build a simple linear regression model which
predicts the high temperature from the past three days of
weather metrics purchased and train it on the data we al-
ready have. However, our model involves few inputs and
produces predictions with high errors. A simple purchase
advisor is used to determine which data updates to buy each
day. Each day, we produce our prediction value based on
the last few days’ worth of data. We then purchase an in-
expensive noisy value with some range r. If our prediction
is within the range of values that could have produced the
noisy value, we deem the prediction good enough and use it
to compute our average. Otherwise, we identify this day’s
update as a case when we have insufficient information to
make a good prediction, and proceed to purchase the true
value at full price. The noisy value serves only as an inex-
pensive check on our prediction. This purchase advisor is a
simplified example which demonstrates the role of an advisor
in identifying data updates to purchase while maintaining a
balance of cost and accuracy suitable for the application.

The purchase advisor which incorporates predictions incurs
significantly higher costs than simply purchasing only noisy
values, but it offers a slight increase in accuracy which may
be worthwhile depending on the application. It is also largely
dependent on the quality of the regression model used for
predictions: in an existing data analytics system with a large
store of historical data to train a predictor, predictions may
prove accurate enough that most values will only require an
inexpensive noisy purchase as a check.

Figure 8: Daily cost and error of purchasing values
with range 5 noise vs exact values, using predicted
values as guide.



Figure 9: Daily cost and error of purchasing values
with range 10 noise vs exact values, using predicted
values as guide.

Figure 10: Daily cost and error of purchasing values
with range 20 noise vs exact values, using predicted
values as guide.

9. CONCLUSION
As data-rich applications continue to make use of a large
and growing online data market, a data purchase advisor
can play an important role assisting developers with man-
aging increasingly complex and real-time data purchase de-
cisions. The data advisor we propose here attempts to take
into account a wide range of applications, data sets, and pri-
orities and measures of success, balancing cost with harder-
to-specify measures of the performance and quality of in-
formation provided by an application. These measures are
very application-dependent, leaving a number of open ques-
tions in the advisor about how and when to purchase data.
Instead of specifying a single algorithm for a purchase advi-
sor, we have developed a framework and set of questions to
consider, and implemented several simple advisors with dif-
ferent priorities, decision rules, and supported applications
as a demonstration of the possible roles an advisor can play
in application development and long-term support.

We have examined the problem of developing a data advisor
from several different viewpoints: offline and online advisors,
advisors which accomodate a variety of data and customer
priorities, and, perhaps most useful, advisors which work in
less ideal situations to provide a practical balance of cost
and accurate information. For applications with a focus on
analytics and using large quantities of data, this approxi-
mate advisor may prove most useful in managing large data
consumption at reasonable cost. In each case examined in
the work above, we have outlined some of the tradeoffs and
choices that must be made depending on the application
which the advisor is to support. We have then proceeded
to demonstrate the performance of a sample advisor con-
structed from this scenario. Our advisors are not developed
to a point of supporting real use yet, but they provide a proof
of concept for a variety of relatively simple purchase advisors
which handle purchase decisions in a simple manner while
attempting to maximize a developer-defined success metric
for the application.

Regardless of how it is implemented, use of a purchase ad-
visor is very much dependent on how data is purchased. In
this area, we have surveyed the current data market and
popular data sources, sellers, and APIs, but also make some
assumptions about data purchase which are not yet a reality
in the online data market. Despite the popularity of online
data sales, there remains a gap between current publicly
available sales channels and the granularity and automation
required for intelligent, real-time purchases by a purchase
advisor. To fill this gap, we have proposed a data SLA as
a standardized method of specifying data quality and fresh-
ness metrics. This concept is somewhat more general than
the advisor, allowing for the comparison and combination of
different online sources to build a more comprehensive and
useful data set.

The data purchase advisor as we have described it is a flexi-
ble concept which can be adapted to a variety of applications
and data markets. In defining its interaction with the devel-
oper and data sellers, its inputs and outputs, and its deci-
sion mechanisms, we have raised several questions about how
data-rich applications and data sellers interact with or with-
out a purchase advisor. Beyond the single-purpose advisors
we have implemented here, built to support a single simple
application, there remains a gap between current data pur-
chase mechanisms and strategies and a more general-purpose
purchase advisor which can be widely used by developers in-
dependently of the applicaiton development itself. What a
more general data purchase advisor looks like will depend
on future work in online data sales, data purchase metrics,
and development of a standardized language for data use in
increasingly data-heavy applications.

10. REFERENCES
[1] Schomm, Stahl, Vossen. Marketplaces for Data: An

Initial Survey.

[2] ”API Overview.” Yelp for Developers. Yelp.
http://www.yelp.com/developers/getting_started.

[3] Dumbill, Edd. ”Data Markets Compared.” Strata.
O’Reilly, 7 Mar. 2012. http://strata.oreilly.com/
2012/03/data-markets-survey.html.

[4] ”Google Prediction API.” Google Developers. Google.

http://www.yelp.com/developers/getting_started
http://strata.oreilly.com/2012/03/data-markets-survey.html
http://strata.oreilly.com/2012/03/data-markets-survey.html


http://developers.google.com/prediction/sla.

[5] Products. Gnip. http://gnip.com/products/.

[6] Windows Azure Marketplace. Microsoft.
http://datamarket.azure.com/.

[7] ”Jigsaw API.” Data.com.http:
//www.data.com/export/sites/data/common/

assets/pdf/DS_Datadotcom_Connect_API_Docs.pdf.

[8] Ortiz, Almeida, Balazinska. A Vision for Personalized
Service Level Agreements in the Cloud.

[9] Bouzeghoub, Peralta. A Framework for Analysis of
Data Freshness.

[10] Agarwal et al. BlinkDB: Queries with Bounded Errors
and Bounded Response Times on Very Large Data.

[11] M.J. Menne, C.N. Williams, Jr., and R.S. Vose. United
States Historical Climatology Network Daily Dataset. Na-
tional Climatic Data Center, National Oceanic and Atmo-
spheric Administration. http://cdiac.ornl.gov/ftp/ushcn_
daily/

http://developers.google.com/prediction/sla
http://gnip.com/products/
http://datamarket.azure.com/
http://www.data.com/export/sites/data/common/assets/pdf/DS_Datadotcom_Connect_API_Docs.pdf
http://www.data.com/export/sites/data/common/assets/pdf/DS_Datadotcom_Connect_API_Docs.pdf
http://www.data.com/export/sites/data/common/assets/pdf/DS_Datadotcom_Connect_API_Docs.pdf
http://cdiac.ornl.gov/ftp/ushcn_daily/
http://cdiac.ornl.gov/ftp/ushcn_daily/

