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On a Competitive Secretary Problem
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The secretary problem is a famous model for matching an employer with an applicant, in which an employer
sees a stream of applicants and tries to hire the best. Here we consider an extension in which there are
multiple employers seeing the same stream of applicants. Different employers are favored by the applicants,
leading to competition between employers to hire higher-ranked applicants. We derive optimal strategies
and related results for this extension, as well as give numerical results from simulations.

1. INTRODUCTION
The classical secretary problem [Ferguson 2012] is one of the most basic models for
matching an employer with an employee: An employer wishes to hire a single employee
out of a pool of n, and wants this employee to be the best in the pool. The employees
arrive in a random order, and a decision as to whether to make an offer is irrevocable.
If the goal of the employer is to maximize the probability of hiring the best in the
bunch, he should wait until he has seen 1/e of the applicants, and then hire the first
one better than the best he has seen so far.

Now consider a scenario in which there are multiple employers competing for the
potential employees. We explore two questions in this paper: (1) how does the competi-
tion between the employers affect their hiring strategies? (2) How well do the employ-
ers and applicants do in the presence of competition? We explore this question in the
context of a game defined as follows:

There are k totally ranked employers and n totally ranked applicants. The relative
ranks of the applicants are initially unknown to the employers. The applicants arrive
one by one in a random order and at the moment they arrive all the employers learn
their rank relative to all applicants that have arrived earlier. As each applicant arrives,
any number of the employers may choose to make her an offer; there is no possibility of
making her an offer later. Since the employers are totally ranked (imagine for example
that the employers are computer science departments and the applicants are faculty
candidates), an applicant that receives multiple offers will accept the offer from the
highest ranked employer among those making her an offer. Once an employer has
hired an applicant, he can make no further offers. For most of this paper, we assume
that the payoff to the j-th ranked employer is 1 if he successfully hires one of the top j
applicants.

In Section 4, we use dynamic programming to find a subgame-perfect Nash equi-
librium in this game. The computation of these equilibrium strategies is aided by the
fact that they can be computed inductively in order of decreasing rank of the employer.
(The applicants have no strategy – they simply take the best offer they receive.) In-
deed, the strategy for the top ranked employer is the optimal strategy in the secretary
problem: he is unaffected by the competition, since any offer he makes will be accepted.
Thus, since his goal is to maximize the probability of hiring the best secretary, will run
the usual secretary algorithm. The second-ranked employer, must, however, take the
first-ranked employer’s optimal strategy into account. However, he does not need to
worry about competition from lower ranked employers. And so on.

The structure of the strategies used, not surprisingly, has the following general
structure: Consider, say the i-th ranked employer. Then there is a set of numbers
1 > α1 > α2 > . . . > αi ≥ 0 such that employer i will attempt to make an offer to
the j-th best so far, after αjn applicants have been seen. However, these thresholds
vary over time, depending on whether higher ranked employers have already hired
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someone or not. After higher-ranked employers have hired, the thresholds increase,
i.e., an employer’s standards go up as applicants are snapped up by higher ranked
employers and competition from these employers has ceased.

Unfortunately, there is no closed form description of these strategies and the com-
plexity of solving for the j-th highest ranked employer strategy is Ω(2jn), since to be
a best response, he must change his strategy depending precisely on which subset of
higher ranked employers have already hired someone. It is an interesting open ques-
tion whether there are other equilibria that are simpler.

In Section 5, we consider the setting in which each employer receives a payoff of 1 if
he hires the top-ranked applicant, and 0 otherwise. We simplify our dynamic program
to compute the optimal strategies and probabilities in polynomial time.

In Section 6, we describe the results of simulations with the optimal strategies.

2. RELATED WORK
The classical secretary problem and its solution are well-known and may be found in
literature reviews such as [Freeman 1983]. The optimal strategy and proof of its op-
timality can be derived in many ways. In [Ferguson 2012], it is derived by a direct
probabilistic proof. In [Bruss 2000], it is derived through a new algorithm called the
Odds algorithm that more generally computes optimal strategies for a variety of opti-
mal stopping problems.

There is also an abundance of work on this problem and its extensions. [Frank 1980]
considers a problem very close to ours in which a single person wishes to hire one of the
top few applicants. It uses a dynamic program to compute the optimal strategies. [Dietz
2011] considers this setting as well, but it limits the possible strategies to those that
are simple in that they use at most two thresholds. It finds that this class of strategies
is an extremely accurate approximation to the optimal strategies. In [Immorlica 2006],
a competitive environment is introduced in which multiple identical employers try to
hire the best applicant, and a applicant with multiple offers chooses randomly. It finds
that the optimal strategy shifts the timing of the earliest offer further back as the
number of employers grows.

3. THE GAME
We analyze the following game: There are k employers and n employees (secretaries).
The n employees arrive one at a time. As each employee arrives, any employer who
has not yet employed anyone, can decide to make that employee an offer. These offers
are made simultaneously. If she receives one or more offers, the employee will choose
her favorite. The strategic decision for the employers is when to make an offer.

We make two key assumptions:

(1) The employees are of unknown but strictly comparable quality, and arrive in a
random order.

(2) All employees have the same ranking on employers and this ranking is publicly
known.

4. THE OPTIMAL STRATEGY
This section derives the optimal strategy in the competitive setting in which the j-th
ranked employer wants to hire from the top j ranked applicants.

4.1. Notation and Definitions
Given k employers and n applicants, at any point in time in the game, let xj be the
indicator variable for whether Employer j has hired an applicant. Let x = (x1, . . . , xk).
Now x describes who has hired and who has not. The optimal strategy for each em-



ployer depends on x, meaning it may change with time if another employer makes a
new hire.

LetRj(i, x;n) be the minimum probability that Employer j fails to get one of the top j
applicants among all strategies that do not attempt to hire until more than i applicants
have arrived and that are valid under x. A strategy for Employer j is valid under x if,
assuming all other employers act optimally, Employer j never has the potential to
make an offer to a candidate to which a better-ranked employer who has not hired
according to x would also make an offer. Also, we say Rj is defined only when xj = 0.
Now Rj(i, x;n) represents the risk of rejecting the i-th applicant.

Let ri rank of the i-th applicant, and let rri be the relative rank of the i-th applicant,
meaning its rank among the first i applicants that appear.

Next we define three auxiliary functions. Let HRR(i, j, x;n) be the highest relative
rank of applicant i that would be hired by one of Employers 1, . . . , j who has not hired
yet under x, according to optimal strategies. Let HRR evaluate to 0 if there is no such
applicant. Let AE(i, t, j, x;n) (accepted employer) be the index of the employer who
would offer to applicant i with relative rank t and be accepted, and who has not hired
yet under x, and whose employer rank is j at most. LetNX(i, t, j, x;n) (new x) be a copy
of x but with a 1 at index AE(i, t, j, x;n). Then NX(i, t, j, x;n) is the new constraint
after applicant i is hired. Note that t ≤ HRR(i, j, x;n) implies that AE(i, t, j, x;n) and
NX(i, t, j, x;n) exist.

4.2. Backwards Induction
Our aim is to compute Rj(0,0;n), the optimal initial probability of failure for Employer
j. We start by computing the probability that the i-th applicant has worse rank than c
conditioned on its relative rank. This probability follows the cumulative hypergeomet-
ric distribution,

Pr(ri > c|rri = t;n) =

t∑
m=0

(
c

m

)(
n− c
i−m

)/(n
i

)
because we sum the probabilities of all ways in which the first i applicants contain
m ≤ t of the top c applicants. Note that this quantity is nonincreasing in i.

The next lemma describes a dynamic program to compute Rj . An interpretation of
the program is that it computes the optimal risk Rj at applicant i in terms of the
optimal risk at i + 1. When the i-th applicant would accept Employer j’s offer, then
the program computes whether there is a higher probability of success in making an
offer or rejecting the applicant. When the i-th applicant would receive and accept a
different offer, the program uses the risk associated with the new hiring status. The
program must be computed with i decreasing from n to 0 and with the number of 1’s in
the first j indices of x decreasing from j to 0. Additionally, Rj ’s must be computed with
increasing j.

LEMMA 4.1. We have

Rj(i− 1, x;n) =
1

i

{
HRR(i,j−1,x;n)∑

t=1

Rj(i,NX(i, t, j − 1, x;n);n)

+

i∑
t=HRR(i,j−1,x;n)+1

min(Rj(i, x;n),Pr(ri > j|rri = t;n))

}
with initial condition

Rj(n, x;n) = 1.



PROOF. The optimal risk when no applicants are accepted is 1, so Rj(n, x;n) = 1.
We condition on the relative rank t of applicant i. Now t is uniformly distributed

between 1 and i, so we get the initial 1/i factor.
Next we explain the first sum. We consider all t that would be hired by an employer

ranked better than j. This is all t ≤ HRR(i, j − 1, x;n) for the following reason. By
definition t = HRR(i, j − 1, x;n) would be hired by a better employer than j. Then any
lesser t would also be hired because if an employer is hiring relative rank t, it clearly
is also hiring better relative ranks than t. For these t that would be hired by a better
employer than j, the minimum risk is Rj(i,NX(i, t, j − 1, x;n);n). Clearly we must
move from i− 1 to i. We also move to status NX(i, t, x;n) from x because x has gained
a 1 somewhere to represent another employer making a hire.

Next we explain the second sum. For the remaining t, the relative ranks such that
no better employers than j would make an offer, Employer j has the choice of rejecting
or hiring. If he rejects, his risk is clearly Rj(i, x) because he moves from i − 1 to i and
the constraint is still x. If he accepts, his risk is Pr(ri > j|rri = t), the probability that
the true rank of i is worse than j given its relative rank of t. So his optimal risk is the
minimum of these choices.

Note that x is a binary vector of length k and there are n applicants, so computing
Rj takes time Ω(2kn).

The next lemma is important to proving the form of the optimal strategy.

LEMMA 4.2. Rj is nondecreasing in i.

PROOF. Fix x, n, and j, and i. For any rri = t > HRR(i, j − 1, x;n), we have
min(Rj(i, x;n),Pr(ri > j|rri = t;n)) < Rj(i, x;n). For any rri = t ≤ HRR(i, j − 1, x;n),
we claim that

Rj(i,NX(i, t, j − 1, x;n);n) ≤ Rj(i, x;n).

The hiring status for the left term is x′ = NX(i, t, j − 1, x;n). Its only difference from
the hiring status x for the right term is that exactly one additional employer has made
a hire in x′. In other words, the employer faces strictly less competition when the hiring
status is x′ than x, in the sense that fewer of its offers would be turned down in favor
of offers from better-ranked employers. The available strategies for x are a subset of
those for x′. Therefore, the optimal strategy for x cannot do better than the optimal
strategy for x′. Since Rj represents the chance that an optimal strategy loses, it must
be that Rj(i, x

′;n) ≤ Rj(i, x;n).
Then every term in the expression from Lemma 4.1 for Rj(i − 1, x;n) is at most

Rj(i, x;n), which implies that Rj is nondecreasing in i.

These lemmas imply the optimal strategy.

THEOREM 4.3. Given n applicants, a hiring status x, an employer rank j, and an
applicant relative rank t ≤ j, there is a number Tjt(x) such that it is optimal for Em-
ployer j to accept an applicant of relative rank t if and only if the applicant arrives at
position Tjt(x)n or later.

PROOF. It is optimal for Employer j to offer to the i-th applicant with rri = t if and
only if Rj(i, x;n) ≥ Pr(ri > j|rri = t;n), meaning when the risk Rj(i, x;n) of rejecting
the applicant is at greater than or equal to the risk Pr(ri > j|rri = t;n) of accepting.
Now Rj is nondecreasing in i and Pr(ri > j|rri = t;n) is nonincreasing in i. Thus if this
condition is satisfied for some i, then it is satisfied for all i′ > i. Then we are done by
letting Tjt(x) correspond to the first such i:

Tjt(x) = min
i
i/n s.t. Rj(i, x;n) ≥ Pr(ri > j|rri = t).



4.3. Computing the Auxiliary Functions
LEMMA 4.4. We can compute HRR as

HRR(i, j, x;n) = max
t,`

t

s.t. τ`t(x)n ≤ i, 1 ≤ t ≤ ` ≤ j, x` = 0.

PROOF. Interpret t as the relative rank of applicant i and ` as the index of the
employer. Constraint 1 says that i must be after threshold τ`t(x), the threshold for
employer ` to take relative rank t. Employer `must be seeking to hire people of relative
rank t. Constraint 2 says that the relative rank t is at most the employer index `, which
is at most j. Employer ` only ever wants relative ranks better than `. Constraint 3 says
that employer ` has not hired.

LEMMA 4.5. We can compute AE as

AE(i, t, j, x;n) = min
`
`

s.t. τ`t(x)n ≤ i, t ≤ ` ≤ j, x` = 0.

PROOF. Interpret ` as the index of the employer. Constraint 1 says that i must be
after threshold τ`t(x), the threshold for employer ` to take relative rank t. Employer `
must be seeking to hire people of relative rank t. Constraint 2 says that the employer
index ` is at least t and at most j. Employer ` only ever wants relative ranks better
than `. Constraint 3 says that employer ` has not hired.

4.4. Different Employer Objective
Instead of hiring one’s own rank or better, the results of this section can be generalized
to the setting where Employer j wants to hire one of the best cj applicants for some
constant cj . It is not difficult to show that Theorem 4.3 holds in this case.

5. HIRING ONLY THE BEST
5.1. Optimal Strategy
The previous section can be adapted to the special case where each employer only
wants the best applicant. Because this special case is much simpler, the dynamic pro-
gram can be simplified to an O(kn) dynamic program.

Let Ti be the optimal threshold of Ei. Let Rj(i) be the optimal risk for Ej among
rules that reject the first i applicants assuming that no employers have hired from the
first i applicants. Then Rj(n) = 1 for all j. Also

R1(i− 1) =
1

i
min{R1(i), 1− i

n
}+ (1− 1

i
)R1(i).

There is a 1/i chance that the ith is the best so far. If it is, the chance that it is the
best overall is i/n, the probability that the best overall is in the first i. So the risk of
accepting is 1− 1/i. Thus the optimal risk is the minimum of the risk of accepting and
the risk of rejecting. If the ith is not the best so far, the optimal risk is simply R1(i).

The threshold T1 is one before the first index where the risk of accepting is less than
the risk of rejecting. We subtract one because this index may be hired, but everything
should be rejected up to the threshold,

T1 = min{i− 1 : R1(i) ≥ 1− i

n
}.



Now T1 exists since at i = n, R1(n) ≥ 0.
For j > 1, we have two cases depending on whether i ≤ Tj−1. If so, then Ej will be

able to hire a best so far. Otherwise, Ej cannot hire because a higher ranked employer
will hire instead. When i ≤ Tj−1, we have

Rj(i− 1) =
1

i
min{Rj(i), 1−

i

n
}+ (1− 1

i
)Rj(i)

for the same reasons as when j = 1. When i > Tj−1, we have

Rj(i− 1) =
1

i
Rj−1(i) + (1− 1

i
)Rj(i).

In the 1/i chance that i is the best so far, the top ranked applicant will hire. Then the
optimal risk becomes Rj−1(i) because there are only j− 1 employers looking to hire, so
any strategy used by Ej after this hire would have an identical outcome to the same
strategy used by Ej−1 when no one has hired. If i is not best so far, the risk is simply
Rj(i).

In general, the threshold Tj is one before the first index where the risk of accepting
is less than the risk of rejecting and where the index is no farther than Tj−1,

Tj = min{i− 1 : i ≤ Tj−1, Rj(i) ≥ 1− i

n
}.

Now Tj exists since at i = n, Rj(n) ≥ 0.

5.2. Probability of Success Equals Threshold
As n approaches infinity, we show that the probability that an employer hires the best
applicant equals their threshold as a fraction of n. We model this limit as a continuous
setting. The employers see applicants in a period of time [0, 1]. There is an applicant
associated with each value in this set. At any time, the employers know the relative
rankings of all previous applicants, as before. For t ∈ [0, 1], (continuous) threshold rule
t is the strategy of rejecting all applicants before time t and taking the next one better
than those seen so far. This is analogous to the discrete setting.

The following theorem and proof is based on Theorem 1 in [Immorlica 2006].

THEOREM 5.1. When each Ei uses optimal threshold ti, Ei hires the best applicant
with probability ti.

PROOF. Fix i. Assume E1, . . . , Ei−1 use optimal thresholds t1, . . . , ti−1. Let t be the
threshold used byEi, not necessarily the optimal ti. Let f(t) denote the probability that
Ei hires the best applicant using threshold t. We show that there exists a constant C
such that f(t) = t log(1/t)+Ctwhen t ∈ (0, ti−1]. Since ti = arg max f(t) and ti ∈ (0, ti−1],
we have

0 = f ′(ti) = log(1/ti)− 1 + C = f(ti)/ti − 1

so f(ti) = ti.
We now prove that f(t) = t log(1/t)+Ct when t ∈ (0, ti−1]. In the discrete setting, the

probability that Ei hires the best by the ti−1-th applicant using strategy t is
ti−1∑

j=t+1

1

n

t

j − 1
=
t

n

ti−1∑
j=t+1

1

j − 1

which corresponds to the integral

t

n

∫ ti−1

t

dx

x− 1
.



Using a change of variable x = nu, we get

t

n

∫ ti−1/n

t/n

ndu

nu− 1
=
t

n

∫ ti−1/n

t/n

dx

x− 1/n

Let n → ∞, and reinterpret t and ti as values in [0, 1]. Then in the continuous setting,
the probability that Ei hires the best before time ti−1 using strategy t is

t

∫ ti−1

t

dx

x
= t log(1/t)− t log(1/ti−1).

We now must compute the probability that Ei hires the best after time ti−1, an event
we denote A. Let B denote the event that Ei does not hire before ti−1, which occurs if
and only if Ei does not hire between t and ti−1. Since A implies B, we have Pr(A) =
Pr(A,B) = Pr(B) Pr(A|B). Now B occurs if and only if the best applicant before ti−1
comes before t, so Pr(B) = t/ti−1. Next, assume B occurs. Then A is independent of t
because the information that Ei does not hire between t and ti−1 is the same as the
information that Ei does not hire before ti−1. That is, assuming B occurs, Ei’s strategy
appears identical for any t ≤ ti−1. Therefore, Pr(A) = C ′t for some constant C ′. Finally,
f(t) = t log(1/t) + Ct, where C = C ′ − log(1/ti−1).

6. EXPERIMENTAL RESULTS
This section describes the numerical values of the optimal strategies as well as
other relevant simulations from when each employer tries to hire an applicant of at
least their own rank. Unless otherwise stated, all simulations were performed with
n = 3, 000 and 3, 000 iterations where applicable. All error bars correspond to 95% con-
fidence intervals. When there are no error bars, the values were computed precisely
using a dynamic program.

Table I. Probability of Hiring an Applicant

Employer Rank 1 2 3 4 5 6 7
Probability of hiring: using sub-game perfect equilibrium strategies .368 .432 .466 .490 .501 .520 .531
Probability of hiring: optimal non-competitive strategy in competitive setting .359 .403 .381 .343 .326 .326 .317
Probability of hiring: optimal non-competitive strategy without competition .368 .574 .708 .799 .860 .903 .932

Table I and Figure 1 show, for each employer with ranks 1-7, their expected pay-
off in the game, i.e. for the employer of rank j, the probability of successfully hiring
one of the top j candidates. The first row is when all employers use subgame-perfect
strategies. For comparison, the second and third rows show these probabilities when
the j-th ranked employer uses the optimal standalone strategy for hiring one of the
top j applicants, ignoring the fact that there is competition. The third row shows the
performance of this strategy when there is no competition, and the second row shows
the performance of this strategy when there is competition. For example, the rank
2 employer’s optimal competitive strategy has a 43.2% chance of hiring the first or
second best applicant in the competitive setting. Using the optimal non-competitive
strategy, he only has a 39.6% chance. Using the optimal non-competitive strategy in
the non-competitive setting, he has a 57.4% chance.

Table II and Figure 2 show the mean position of hired applicants for each employer
when Employer j tries to hire at worst the j-th ranked applicant, using different
strategies to in competitive and non-competitive settings. The optimal strategy for
the competitive setting is used in the competitive setting. The optimal strategy for the



Fig. 1. Table I as a graph. Optimal probability of making a desired hire vs. employer rank.

Table II. Position of Hired Applicant

Employer Rank 1 2 3 4 5 6 7
Mean Position of Hired Applicant with Competitive Strategy in Competitive Setting .582 .520 .515 .508 .513 .513 .516
Mean Position of Hired Applicant with Non-Competitive Strategy in Competitive Setting .581 .705 .750 .765 .767 .770 .772
Mean Position of Hired Applicant with Non-Competitive Strategy in Non-Competitive Setting .581 .599 .599 .593 .583 .575 .567

non-competitive setting is used in both settings. The mean is over instances in which
an employer makes a hire, so it excludes instances in which the employer hires no one.
The values given are positions as a fraction of n. For example, the rank 2 employer’s
optimal competitive strategy hires an applicant at position .520n on average in the
competitive setting, given that the employer makes a hire.

Table III. Hiring Thresholds

Hiring Status Employer Rank
1 2 3

No hires .368 .246 .189
.559 .413

.635
Employer 2 has hired .368 .258

.507

.727
Employer 1 has hired .347 .239

.667 .475
.677

Employers 1 and 2 have hired .337
.587
.775

These numbers show the hiring thresholds in the opti-
mal strategy for when the j-th ranked employer hires at
worst the j-th ranked applicant in the competitive set-
ting.



Fig. 2. Table II as a graph. Mean position of hired applicant vs. employer rank.

A set of thresholds is given for each possible state of hiring, assuming Employer 3
has not hired. The values given should be multiplied by n to determine the index to
use as thresholds. Up to three values are listed in each box; the first corresponds to
the threshold for hiring the relative best, the second to hiring the second relative best,
and the third to hiring the third relative best.

Consider, for example, the thresholds for the rank 3 employer when no one has hired.
After .189n applicants have passed, the rank 3 employer should make an offer to any
new applicant that is the best so far. Similarly, after .413n applicants, he should also
offer to the second best so far. After .635n, he should also offer to the third best so
far. However, this strategy may need to change if a hire is made by another employer.
For instance, if the rank 2 employer hires someone, then these thresholds should be
abandoned, and instead the rank 3 employer should use .258n, .507n, and .727n.

Table IV. Distribution of Hired Applicants Using Optimal Competitive
Strategy in Competitive Setting

Hired Rank Employer Rank
1 2 3 4 5 6 7

1 .381 .191 .118 .074 .041 .026 .026
2 .229 .168 .121 .080 .056 .031
3 .183 .149 .109 .078 .057
4 .145 .144 .103 .089
5 .135 .127 .093
6 .124 .117
7 .121
> own rank .255 .286 .281 .285 .297 .298 .282
none .364 .294 .251 .227 .193 .186 .183

Table IV and Figure 3 show the distributions of the true ranks of hired applicants
when Employer j uses the optimal strategy to hire at worst the rank j applicant in the
competitive setting. For example, the rank 2 employer has a 19.1% chance to hire the



Fig. 3. Table IV as a graph. Probability of hiring vs. rank of hired applicant. The probabilities for each
employer are plotted as a separate series.

best applicant, 22.6% chance to hire the second best applicant, 28.6% chance to hire
the third best or worse applicant, and a 29.4% chance to hire no one.

Table V. Distribution of Hired Applicants Using Optimal Non-Competitive
Strategy in Competitive Setting

Hired Rank Employer Rank
1 2 3 4 5 6 7

1 36.3 17.3 8.0 2.8 1.6 1.1 0.7
2 22.3 12.0 6.7 3.2 1.9 1.4
3 17.3 10.6 6.4 3.7 2.5
4 14.4 9.6 5.8 4.3
5 11.7 9.1 6.3
6 10.6 7.8
7 10.1
> own rank 26.9 13.8 10.5 9.1 8.0 7.0 5.3
none 36.8 46.6 52.3 56.5 59.6 61.0 61.6

Table V and Figure 4 show the distributions of the true ranks of hired applicants
in the competitive setting when Employer j uses the optimal non-competitive strategy
to hire at worst the rank j applicant. For example, the rank 2 employer has a17.3%
chance to hire the best applicant, 22.3% chance to hire the second best applicant, 13.8%
chance to hire the third best or worse applicant, and 46.6% chance to hire no one.

Table VI and Figure 5 show the distributions of the true ranks of hired applicants in
the non-competitive setting when Employer j uses the optimal non-competitive strat-
egy to hire at worst the rank j applicant. For example, the rank 2 employer has a
32.1% chance to hire the best applicant, 23.2% chance to hire the second best appli-
cant, 20.8% chance to hire the third best or worse applicant, and 23.9% chance to hire
no one.



Fig. 4. Table V as a graph. Probability of hiring vs. rank of hired applicant. The probabilities for each
employer are plotted as a separate series.

Table VI. Distribution of Hired Applicants Using Optimal Non-
Competitive Strategy in Non-Competitive Setting

Hired Rank Employer Rank
1 2 3 4 5 6 7

1 33.5 32.1 30.6 29.0 27.7 26.3 25.3
2 23.2 23.8 23.2 22.4 21.8 20.9
3 15.8 16.5 17.0 17.2 17.2
4 11.0 11.7 12.1 12.4
5 6.7 7.4 7.9
6 4.7 5.1
7 3.5
> own rank 27.7 20.8 14.2 9.4 6.9 5.3 4.0
none 38.8 23.9 15.7 10;9 7.6 5.3 3.6

7. CONCLUSION
We described an extension of the secretary problem in which multiple employers com-
pete to hire the top-ranked secretaries. We derived optimal strategies for when the
employers wanted to hire someone of their own rank or better, and for when the em-
ployers all wanted to hire the best secretary. Our main tool was a dynamic program
whose numerical values were computed and shown. Also, we gave statistics from sim-
ulations of this model.

Numerous open questions present themselves immediately:

(1) What is the optimal strategy for other employer objectives?
(2) What if the applicants do not disappear forever, but rather are strategic in their

decision-making, holding out for future better offers?
(3) Should the employers introduce deadlines for acceptance of offers (as opposed to

requiring immediate decisions), and if so, what is the right strategy for an employer
as a function of his rank? What are the equilibria in the resulting games? How



Fig. 5. Table VI as a graph. Probability of hiring vs. rank of hired applicant. The probabilities for each
employer are plotted as a separate series.

well does the k-th ranked employer do in this equilibrium? How far is the resulting
matching from being stable (in the sense of stable marriage)?

(4) What happens when salaries are introduced?
(5) Do typical hiring practices indeed represent an equilibrium, and how close to so-

cially optimal they are (for an appropriate definition of social welfare)?
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