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Abstract

The “wisdom of crowds” dictates that aggregate predictions from a large crowd can be sur-

prisingly accurate, rivaling predictions by experts. Crowds, meanwhile, are highly heterogeneous

in their expertise. In this work, we study how the heterogeneous uncertainty of a crowd can be

directly elicited and harnessed to produce more efficient aggregations from a crowd, or provide

the same efficiency from smaller crowds. We present and evaluate a novel strategy for eliciting

sufficient information about an individual’s uncertainty: allow individuals to make multiple simul-

taneous guesses, and reward them based on the accuracy of their closest guess. We show that our

multiple guesses scoring rule is an incentive-compatible elicitation strategy for aggregations across

populations under the reasonable technical assumption that the individuals all hold symmetric log-

concave belief distributions that come from the same location-scale family. We first show that our

multiple guesses scoring rule is strictly proper for a fixed set of quantiles of any log-concave belief

distribution. With properly elicited quantiles in hand, we show that when the belief distributions

are also symmetric and all belong to a single location-scale family, we can use interquantile ranges

to furnish weights for certainty-weighted crowd aggregation. We evaluate our multiple guesses

framework empirically through a series of incentivized guessing experiments on Amazon Mechan-

ical Turk, and find that certainty-weighted crowd aggregations using multiple guesses outperform

aggregations using single guesses without certainty weights.
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1 Introduction

In 1907, Francis Galton famously observed that when 787 people at a country fair were asked

to guess the weight of an ox, the median of the guesses (1207 pounds) was impressively close

to the true value (1198 pounds) [Galton, 1907b]. The phenomena behind this observation has

since come to be known as the “wisdom of crowds,” whereby aggregations of non-expert esti-

mates are surprisingly accurate, and has been studied extensively in many disparate contexts

[Lorge et al., 1958, Surowiecki, 2005].

In this work, we explore how one can harness the heterogeneous uncertainty of crowds to im-

prove crowd aggregations by complementing the traditional procedure with an additional request

that elicits each individual’s certainty, and make use of those certainties to usefully weight crowd ag-

gregations. We contribute and analyze a simple novel mechanism for eliciting uncertainty through

a request that is highly compatible with generic crowd estimation procedures: ask individuals to

make multiple simultaneous guesses.

Our theoretical contribution is to show that under reasonable assumptions on their beliefs,

when individuals are rewarded according to a simple multiple guesses scoring rule — scoring them

in proportion to the accuracy of their closest guess — they are properly incentivized to spread

out their guesses in a manner that usefully reveals the certainty of their beliefs in well-structured

ways. More specifically, we show that if a population of individuals hold belief distributions that

are symmetric, log-concave, and all belonging to some single location-scale family, then the above

scoring rule elicits a specific set of quantiles for all individuals in the population, quantiles that

can be used to measure interquantile ranges. We then show that these interquantile ranges can be

used to produce weights for both weighted mean and weighted median aggregations that exhibit

favorable statistical efficiencies.

The significance of the wisdom of crowds phenomena is in many ways empirical: the basic ob-

servation that noisy unbiased measurements can be aggregated to form consistent estimators is not

surprising, but do non-expert crowds really produce unbiased samples? Similarly, are people really

capable of spreading out their multiple guesses to minimize their loss according to scoring rules?

To evaluate the practical significance of our theoretical results, we contribute an experimental

evaluation of our multiple guesses scoring rule through a pair of guessing experiments.

We show that not only does our two guesses scoring rule have favorable theoretical properties, it

is also empirically performative across a series of guessing games conducted on Amazon Mechanical

Turk. Our theoretical analysis predicts that under our assumptions, individuals should place two

guesses as if reporting a [25%,75%] confidence interval. We find that responses to our scoring rule

are statistically indistinguishable from responses under an interval scoring rule that incentivizes

and explicitly asks for [25%,75%] confidence intervals. Furthermore, we find that using inter-guess

ranges to weight aggregations significantly reduces estimation error.

1.1 Model of Crowd Beliefs

Consider an unknown quantity µ of interest, and a population of n individuals who all hold

independent uncertain and generally distinct beliefs regarding µ. In practical settings, µ may

be the current population of a city, the high temperature tomorrow in a specific place, or the

weight of an ox at a county fair. In this work we use a characterization of crowd wisdom built

upon the notion of subjective belief distributions [Wallsten et al., 1997, Vul and Pashler, 2008],

that individuals maintain internal probabilistic representations of their beliefs.

We employ a model of belief distributions in crowds based on noisy signals, where each indi-

vidual is viewed as possessing a single noisy observation of the unknown quantity µ of interest.
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Let each individual make one observation xi from the random variable Si = µ + εi, where µ is

constant and the additive noise term εi is an individualized zero-mean random variable. In general

we assume individuals have different distributions for εi, with personalized variances Var[εi] = σ2
i

that are known to them, modeling their relative knowledge about µ. Meanwhile, we let X1, ..., Xn

be individual belief distributions, the beliefs about µ held by each individual based on their single

observation from Si. In the absence of priors or other assumptions, the mean and variance of Xi

are then E[Xi] = xi and Var[Xi] = σ2
i .

1.2 Related Work

The study of crowd elicitation and aggregation has been pursued in many directions, including the

use of competitive games, scoring using “gold standard” questions, reputations, and the psychology

as well as sociology of uncertainty.

Rewarding individuals according to a scoring rule forms a non-competitive game, with the

guesses only being evaluated relative to a ground truth, not relative any other guessers. An

alternative to using scoring rules to elicit truthful guesses is to create a competitive game between

multiple individuals, and structure the game in a manner that incentivizes honest guesses. We do

not consider competitive games here, but this was in fact how the original Galton study was framed

[Galton, 1907b], a competition that awarded a prize to the individuals with the closest guesses. In

the context of a single guess, a competitive game rewarding the “closest guess” is closely related to

Hotelling’s facility location game [Hotelling, 1929] and can have a highly non-trivial strategy space

[Mendes and Morrison, 2014]. With many players, the optimal symmetric mixed strategy is to

draw guesses from the common public prior [Osborne and Pitchik, 1986]. Under a mixture of public

and private information, as in the “forecasting contest” model [Ottaviani and Sørensen, 2006], it

is optimal to over-emphasize private information relative public information. It has been shown

that aggregating over competitive crowds with a mixture of public and private information can

outperform aggregating over non-competitive crowds, at least under certain models of information

[Lichtendahl Jr et al., 2013]. It is possible that aggregations from a properly structured “multiple

guesses competition” may be more efficient than aggregation from our non-competitive scoring

rule, but we do not explore this question.

In settings where the goal is to make inferences about unknown quantities, scoring functions

generally rely on the use of “gold standard” questions [Shah and Zhou, 2014] with known answers

that are interspersed with unknown answers. The participant does not know which of the questions

are gold standard questions, but scoring rules are applied only to those questions with known

answers. A useful strategy in the complete absence of ground truth knowledge is the so-called

“Bayesian Truth Serum” (BTS) scoring rule [Prelec, 2004], which asks agents for their estimate

and also for their estimate of the sample distribution of estimates from other individuals. By

rewarding agents for their knowledge of the estimates of others, the BTS scoring rule is truth-

eliciting under mild assumptions, even when the truth is unknown. An analysis of a BTS-like

multiple guesses rule, or more generally how incentives change if our scoring rule is evaluated

purely relative to other responses of the crowd [Kamar and Horvitz, 2012], would be an interesting

direction for future research.

In contexts where the same individuals are observed multiple times, a broad range of traditional

strategies for discerning latent reputations become admissible [Dekel and Shamir, 2009]. A burst of

literature has recently examined variations on this theme of identifying “smaller, smarter crowds”

in contexts ranging from policy forecasting [Jose et al., 2013, Budescu and Chen, 2014] to sports

betting [Goldstein et al., 2014, Davis-Stober et al., 2014]. Our context differs in that we have no

repeated judgements upon which to judge quality. It would be interesting to study our multiple
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guesses framework in a repeated judgement setting, to see how effectively one could infer how well

individuals judge their own certainty, potentially enabling improved aggregation.

Regarding prior investigations into multiple guessing, recent psychology research has explored

the concept of “dialectical crowds within” [Herzog and Hertwig, 2009], showing that when peo-

ple provide multiple sequential guesses, the average is a better guess than their first guess pro-

vided. This sequential crowds-within approach does not consider certainty or weighting schemes,

and moreover there is active debate about why the approach works [White and Antonakis, 2013,

Herzog and Hertwig, 2013]. We feel our analysis of multiple simultaneous guesses usefully enhances

this discussion of “crowds within”, providing a theory for how multiple guesses are dispersed under

our scoring rule. Regarding the sociology of crowds, we do not consider the potential impacts (neg-

ative or positive) of social interference between individuals [Lorenz et al., 2011, Das et al., 2013],

or how it can possibly be overcome when it is present.

2 Eliciting Uncertainty

In this section we begin by briefly reviewing the theory of proper scoring rules and how it applies to

eliciting a person’s uncertainty, the variance of their belief distribution. We then use the language

of proper scoring rules to present our novel strategy in terms of multiple guesses, and prove

conditions under which it is proper. Throughout this work we assume all agents are expected

utility maximizers; scoring rules for non-expected utility maximizers [Offerman et al., 2009] are

outside the scope of this work.

2.1 Strictly Proper Scoring Rules

From the perspective of an individual in the crowd, their beliefs about µ are described by a

subjective belief distribution Xi with mean E[Xi] = xi and variance Var[Xi] = σ2
i . Our goal in

this section is to elicit xi and σ2
i by rewarding the individual using an incentive-compatible scoring

rule based on their responses to one or more questions.

Informally, a strictly proper scoring rule for a property of a distribution is a mechanism that

correctly incentivizes individuals to truthfully report their beliefs regarding that property, with

a uniquely optimal answer. For example, the Brier scoring rule for a response r for a belief

distribution X is given by SBrier(r;X) = 2rX − r2, and is a strictly proper scoring rule for the

expectation of a distribution [Brier, 1950, Savage, 1971]. By convention we view score functions

as loss functions, where a lower score is better. The score is a function of a random variable X,

and so individuals aim to choose r to minimize the expected value of their score, minimizing their

expected loss.

More formally, a scoring rule S(r;X) is said to be strictly proper for a response statistic r (here,

the expected value) when, for a person holding beliefs about the distribution of X, the expected

score of reporting E[X] under their beliefs is the best possible expected score:

EX [S(E[X];X)] ≤ EX [S(r;X)],∀r,

with equality if and only if r = E[X].

Beyond eliciting expectations of distributions, an extension of the Brier rule for higher mo-

ments also provides a strictly proper scoring function for jointly eliciting the first k moments of a

distribution [Frongillo et al., 2015]:

SBrier,k(r1, ..., rk;X) =
∑k
j=1 2rjX

j − r2j . (1)
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This Brier rule for higher moments can be used to elicit a person’s joint beliefs about the mean

and variance of a distribution by eliciting {E[X],E[X2]}, which can be transformed to the mean

and variance since {E[X],Var[X]} = {E[X],E[X2]− E[X]2}.
While Brier rules are provably strictly proper, incentive compatible scoring rules are not a suf-

ficient condition for empirically accurate predictions in practice, and may not even be necessary.

Individuals have been shown experimentally to be overconfident even under incentive compati-

ble mechanisms [Keren, 1991]. Different mechanisms attempting to access the same information

can be very differently calibrated empirically. For example, under different incentive compatible

framings, individuals may or may not be able to reliably assess higher moments of distributions

[Goldstein and Rothschild, 2014]. Simply because a mechanism is incentive compatible does not

mean individuals will understand it, and a richer understanding of human computation has a great

deal to contribute to empirical mechanism design. We therefore seek a simple scoring rule that

makes an intuitive request under transparent incentives.

2.2 The Multiple Guesses Scoring Rule for Quantiles

Our proposed strategy for eliciting the mean and variance of belief distributions is to solicit “mul-

tiple guesses” r1, ..., rk, and score the guesser based on the absolute deviation between the true

value and their closest guess:

SMG,k ({r1, ..., rk};X) = min{|r1 −X|, ..., |rk −X|}.

Both the request (make multiple simultaneous guesses) and scoring (minimize the error of your

closest guess) are simple to communicate and understand. Intuitively, guesses that are close

together represent certainty, while guesses that are far apart represent uncertainty. We show

that under reasonable assumptions the scoring rule is in fact strictly proper, and the responses

reveal sufficient information for performing certainty-weighted crowd aggregation.

More specifically, we show that for log-concave belief distributions, soliciting k guesses and

offering rewards based on the absolute deviation of the closest guess is a strictly proper scoring

rule for k quantiles of the belief distribution. The quantiles elicited do not have a simple form in

general, but we show that they must be the same fixed quantiles across all distributions within the

same location-scale family. In the special case of symmetric log-concave distributions and k = 2,

we show that the quantiles do have a simple form: {p1, p2} = {F−1X (1/4), F−1X (3/4)}, where F−1X

is the quantile function of the belief distribution X.

To compare this rule to other known proper scoring rules for quantiles, it is known that quantiles

are elicitable for general distributions (not merely log-concave distributions) under more complex

scoring rules [Lambert et al., 2008]. An example of a strictly proper scoring rule for jointly elic-

iting the quantiles {F−1X (α1), ..., F−1X (αk)} of a general distribution X, with all αi ∈ (0, 1), is

[Gneiting and Raftery, 2007]:

Squantile,k(r1, ..., rk;X) =
∑k
j=1(X − rj)1[X ≥ rj ]− αjrj . (2)

The related interval scoring rule is a known strictly proper scoring rule for two symmetric quantiles

{F−1X (α2 ), F−1X (1− α
2 )}, defined as:

Sinterval(`, u;X) = (u− `) + 2α−1(`−X)1[X < `] + 2α−1(X − u)1[X > u]. (3)

This interval scoring rule effectively asks for a confidence interval [`, u], and penalizes outcomes

that fall outside the interval while concurrently penalizing a wide interval. For the case of α = 1/2,

the interval score elicits {F−1X (1/4), F−1X (3/4)}, the same quantiles as our two guesses scoring rule
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for symmetric log-concave distributions. While the two guesses scoring rule is only strictly proper

for log-concave distributions, it is intuitively simpler than the interval scoring rule, for which the

simplest description is arguably “your score is the width of your interval, and if the observation

falls outside your interval, add on four times how far outside it falls.” In the experimental portion

of this work, we evaluate the relative empirical performance of the two guesses scoring rule and

the interval scoring rule when targeted to elicit the same two quantiles.

2.3 The Properness of Multiple Guesses

We now present our main result, the strict properness of our multiple guesses scoring rule for

eliciting specific quantiles of any log-concave uncertainty distribution, where log-concavity is a

sufficient but not necessary condition. We also present a second proposition regarding additional

results for symmetric log-concave distributions.

PROPOSITION 2.1 For any log-concave distribution X, the k guesses scoring rule

SMG,k({r1, . . . , rk};X) = min{|X − r1|, . . . , |X − rk|},

is strictly proper for some set of points {p1, . . . , pk}, meaning

EX [SMG,k({p1, ..., pk};X)] ≤ EX [SMG,k({r1, ..., rk};X)]

for all {r1, . . . , rk}, with equality if and only if pi = ri,∀i. For all k, the ordered quantiles of

{p1, . . . , pk} are fixed for all distributions within the same location-scale family.

PROPOSITION 2.2 For any symmetric log-concave distribution X the unique quantiles are

symmetric, meaning pi = F−1X (q) ⇔ pk−i+1 = F−1X (1 − q) for i = 1, ..., k, where indices are or-

dered. For k odd, the median response is the median of X, p(k+1)/2 = F−1X (1/2). For k = 2,

{p1, p2} = {F−1X (1/4), F−1X (3/4)}.

Log-concave distributions include the Normal, Laplace, Logistic, Gamma, and Uniform distri-

butions. Location-scale families include the Normal distribution family, the Laplace distribution

family, the Uniform distribution family, and any elliptical distribution family. The proof of the

uniqueness in Proposition 2.1 is an application of a known result from the literature on optimal

quantizers; establishing that the quantiles are fixed within a location-scale family requires some

basic novel analysis. We first provide a discussion that usefully frames the results before giving

the proofs.

Notice that the expectation of the multiple guesses score function can be written as:

EX [min{|X − r1|, ..., |X − rk|}] =
∫ r1+r2

2

−∞ |x− r1|fX(x)dx+ ...+
∫∞

rk−1+rk
2

|x− rk|fX(x)dx,

where we’ve assumed, without loss of generality, that r1 ≤ . . . ≤ rk are ordered. This objective

function is precisely the objective function of the k-median problem for a continuous univariate

distribution, the task of determining k ordered points r1, ..., rk that minimize the expected absolute

deviation under that distribution. Therefore, conditions under which the continuous k-medians

problem has a unique optimal set are conditions under which we know that our score function

elicits a unique response set. Slight variations on the k-medians problem have been studied across

a broad range of literatures: it is a variation on the facility location problem in operations research

[Shmoys et al., 1997], the Fermat-Weber problem in geometry [Fekete et al., 2005], and the optimal

quantizer problem in signal processing [Dalenius, 1950, Fleischer, 1964].
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Figure 1: Left: for the two guesses scoring rule, the unique optimal response set for a zero-mean

Normal distribution is {−0.674σ, 0.674σ}. Right: as an example of how even symmetric and

unimodal non-log-concave distributions may not have a unique optima, for the zero-mean double

Weibull distribution [Mease et al., 2004] there are two asymmetric optima {−d, b} and {−b, d} that

both outperform the best symmetric answer {−c, c}.

For k-medians problems in general — beyond univariate log-concave distributions — there can

be multiple globally optimal sets that are equivalently optimal, meaning that a rational individual

with beliefs that are not log-concave could be equally justified in returning any one of several

globally optimal sets. Figure 1 presents an example of how uniqueness can fail in general even for

symmetric unimodal distributions.

There are many known sufficient conditions for uniqueness for the optimal quantizer problem, of

which the univariate k-medians problem is a special case, but they are not neatly nested. Results

can generally be divided into sufficient conditions on the probability distribution and sufficient

conditions on the loss function, where the loss function for k-medians is simply absolute deviation.

In 1964, Fleischer gave an analysis of Lloyd’s algorithm for the k-means problem (quadratic loss

[Lloyd, 1982]), and found that for log-concave univariate distributions the optima of the objec-

tive function is unique, and Lloyd’s algorithm finds that optima [Fleischer, 1964]. After Fleischer,

log-concavity was shown to also be a sufficient condition for uniqueness of local optima for any

symmetric convex loss function L(z) where L(z) = 0 iff z = 0 [Trushkin, 1982, Kieffer, 1983], which

includes the absolute deviation loss function used in the k-medians objective function. Recently,

even weaker conditions have been given, showing that uniqueness holds for log-concave distributions

under loss functions that are slightly more general than convex [Delattre et al., 2004, Cohort, 2000].

These conditions are arguably the broadest concise sufficient conditions known in the literature,

though it is also known that log-concavity is not a necessary condition for uniqueness: other meth-

ods have shown uniqueness for e.g. Pareto distributed uncertainty (under convex loss functions),

which is not a log-concave distribution [Fort and Pagès, 2002].

We now state a special case of the general result of Cohort [Cohort, 2000], for which the strict

properness of our multiple guesses score function is a corollary.

PROPOSITION 2.3 For the absolute deviation loss function L(x) = |x| and fX(x) log-concave,

there exists a local minima r1, ..., rk for the expected loss

EX [min{L(X − r1), ..., L(X − rk)}],

for any k, and it is unique.

PROOF. See any of [Trushkin, 1982, Kieffer, 1983, Cohort, 2000], with Cohort providing the

most general result. �
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Using this uniqueness, we now prove the results presented in Proposition 2.1 and Proposition

2.2.

PROOF (OF PROPOSITION 2.1). By Proposition 2.3, we know the optima exists and is

unique. For general k, there is no simple expression for a universal set of quantiles, as the quantiles

can be distribution-dependent. We now show that for a fixed k, the same quantiles are elicited

for all distributions belonging to the same location-scale family. For general k, the stationary

conditions of the expected loss g({p1, ..., pk};X) = EX [SMG,k({p1, ..., pk};X)] are:
∂g
∂p1

= 2FX(p1)− FX(p1+p22 ) = 0
∂g
∂pi

= 2FX(pi)− FX(pi−1+pi
2 )− F (pi+pi+1

2 ) = 0, i = 2, . . . , k − 1
∂g
∂pk

= 2FX(pk)− FX(pk−1+pk
2 )− 1 = 0.

By setting qi = FX(pi), ∀i, we have the following system of equations:
2q1 = FX(

F−1
X (q1)+F

−1
X (q2)

2 )

2qi = FX(
F−1

X (qi−1)+F
−1
X (qi)

2 ) + FX(
F−1

X (qi)+F
−1
X (qi+1)

2 ), i = 2, . . . , k − 1

2qk = FX(
F−1

X (qk−1)+F
−1
X (qk)

2 ) + 1.

For every distribution X (with location parameter µ and scale parameter σ) in a location-scale

family F , we can transform the cumulative distribution function and its inverse to a standardized

distribution Z ∈ F (with location 0 and scale 1) using the properties FX(p) = FZ(p−µσ ) and

F−1X (q) = µ + σF−1Z (q). By substitution, we can reduce the system of equations to only depend

on properties of Z, obtaining:
2q1 = FZ(

F−1
Z (q1)+F

−1
Z (q2)

2 )

2qi = FZ(
F−1

Z (qi−1)+F
−1
Z (qi)

2 ) + FZ(
F−1

Z (qi)+F
−1
Z (qi+1)

2 ), i = 2, . . . , k − 1

2qk = FZ(
F−1

Z (qk−1)+F
−1
Z (qk)

2 ) + 1.

Thus, for all distributions in the same location-scale family, the points p1, . . . , pk must have the

same quantiles q1, . . . , qk as the quantiles for the standard distribution Z of the family F . �

PROOF (OF PROPOSITION 2.2). For X symmetric log-concave, existence and uniqueness

again follow from Proposition 2.3. The symmetry pi = F−1X (q) ⇔ pk−i+1 = F−1X (1 − q) for i =

1, ..., k follows from the uniqueness of the optimal point set: if the points were not symmetric then

a reflection of the point set about the median would have the same expected loss, a contradiction

of uniqueness. This result in turn gives us that the median F−1X (1/2) belonging to the optimal set

for k odd.

Meanwhile for k = 2, the explicit optima {p1, p2} = {F−1X (1/4), F−1X (3/4)} can be easily

derived, and here we verify by ansatz that {F−1X (1/4), F−1X (3/4)} satisfy the stationary conditions

of the expected loss for all symmetric X:{
∂g
∂p1

= 2FX(p1)− FX(p1+p22 ) = 0
∂g
∂p2

= 2FX(p2)− FX(p1+p22 )− 1 = 0.
⇒

{
1/2 = FX(p1+p22 )

1/2 = FX(p1+p22 )

⇔ F−1X (1/2) = [F−1X (1/4) + F−1X (3/4)]/2.
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This last condition holds for all symmetric distributions X, while log-concavity continues to act

as a sufficient condition for uniqueness. �

Proposition 2.3 establishes that the unique global optima is in fact the only local optima. The

existence of only a single local optima is a strong statement about computability that relates

closely to human reasoning and the capabilities of individuals with so-called “bounded rationality”

[Simon, 1972]. The uniqueness of the local optima follows not from convexity, as the objective

function is not convex, but rather from more subtle uniqueness arguments such as the Mountain

Pass Theorem [Courant, 1950].

Having established that our multiple guesses scoring rule can be used to elicit specific sets

of quantiles, in the next section we will establish that interquantile ranges — simply taking the

gap between any two quantiles — can provide sufficient information for constructing weights in

weighted wisdom of the crowd aggregation settings.

3 Aggregation with Uncertainty

In this section, we study certainty-weighted aggregation strategies for aggregating the beliefs

and uncertainties of a population with regard to an unknown quantity. In particular, we derive

certainty-weighted estimators that outperform their unweighted analogs in terms of their asymp-

totic relative statistical efficiency in various noise models. We evaluate this robustness using a

contamination model approach [Tukey, 1960] from robust statistics.

Recall that we are considering a population of individuals who each hold a single observation

xi from a differently corrupted signal Si = µ + εi, with the goal of estimating µ. We assume all

the observations xi and variances of the noise distributions Var[εi] = σ2
i are known to use, having

successfully elicited them from the individual belief distributions using the strategy outlined in the

previous section. From the perspective of an aggregator, we thus have n observations xi from the

differently corrupted signals Si = µ+ εi, and our goal is to estimate µ.

The two main aggregation strategies we consider are the certainty-weighted mean and the

certainty-weighted median of the population. In Francis Galton’s original 1907 study of weight

guessing [Galton, 1907b], which did not attempt to leverage certainty, Galton strongly advocated

aggregation using the sample median, since the mean gives “voting power to cranks in proportion

to their crankiness” [Galton, 1907a]. In more formal parlance, basic results from robust statistics

dictate that for thin-tailed distributions, the mean is a more efficient estimator than the median,

while for distributions with heavy tails (such as populations of guessers that contain cranks) the

median is more efficient.

The relative efficiency of estimating location parameters using means or medians was first

studied by Laplace [de Laplace, 1820, Stigler, 1973] and would have been known to Galton. Laplace

showed in the 1810’s that when samples are drawn from a single zero-mean random variable X

with symmetric distribution fX , the asymptotic variance of the sample median is 1/(4fX(0)2n),

while the asymptotic variance of the sample mean is E[X2]/n, meaning that the median is more

efficient that the mean if and only if 4fX(0)2n > E[X2]−1. For normal distributions the mean is

more efficient, while for distributions with heavy tails, the median is more efficient.

A key difference between what Laplace was studying and the crowd context we are studying is

that our population of observations xi do not come from a single distribution, but instead from a

family of distributions with a shared location parameter. How can we incorporate both the elicited

observations and the elicited variance to maximize our efficiency?

To answer this question, we first derive maximum likelihood estimators (MLEs) under known
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heterogeneous variances for two basic families of noise distributions: Normal distributions and

Laplace distributions. We observe that the variance-weighted mean is the MLE for the Normal

family, while the standard deviation-weighted median is the MLE for the Laplace family. We

then establish that for families of distributions that belong to the same location-scale family, the

variance (and therefore standard deviation) weights can be replaced by any interquantile range,

enabling us to employ the quantiles deduced in the previous section. Lastly, we consider several

contamination models in the style of Tukey [Tukey, 1960], where some observations have much

greater variance than others, and observe that the weighted median is the most efficient of our

estimators in contaminated contexts.

3.1 MLEs: Weighted Mean and Weighted Median

We now consider the cases of Normal family uncertainty and Laplace family uncertainty, deriving

the optimal weighting schemes for maximum likelihood estimation when the noise distributions

come from these families.

3.1.1 Normal Uncertainty

We first consider Normal uncertainty, where all individuals signals Si = µ+ εi have noise terms εi
that are N(0, σ2

i ). For this case we have the following proposition:

PROPOSITION 3.1. Given x1, . . . , xn drawn from S1, . . . , Sn where Si ∼ N(µ, σ2
i ) indepen-

dently with σ2
i known ∀i, the MLE for µ is given by µ̂N =

(∑n
i=1

xi

σ2
i

)
/
(∑n

i=1
1
σ2
i

)
.

PROOF. The log-likelihood function is simply:

` (µ; {xi}ni=1 , {σi}
n
i=1) = −

n∑
i=1

ln(σi)−
n∑
i=1

(xi − µ)2

2σ2
i

(4)

which makes the estimator:

µ̂N =

∑n
i=1

xi

σ2
i∑n

i=1
1
σ2
i

.

Intuitively, this MLE discounts estimates from individuals who are uncertain and focuses weight on

those who are certain. When the uncertainties are homogeneous (σi = σ, ∀i), the above estimator

µ̂N reduces to a homogeneous estimator µ̂N,hom = 1
n

∑n
i=1 xi, which is independent of σ, even

when σ is known. This highlights that if the uncertainties are homogeneous, collecting information

about individual uncertainties would be a waste of surveying resources, as it would not figure in

the optimal estimator.

What if the uncertainties σi were heterogeneous and we incorrectly assumed they were homo-

geneous? The following proposition shows that if a population has heterogeneous uncertainty, then

the heterogeneous estimator dominates the homogeneous estimator, in the sense that it always has

strictly lower variance.

PROPOSITION 3.2. Given x1, ..., xn drawn from S1, ..., Sn, where Si ∼ N(µ, σ2
i ), indepen-

dently with σ2
i known ∀i, the variances of the heterogeneous and homogeneous estimators µ̂N and

µ̂N,hom respectively are:

Var[µ̂N ] =
1∑n

i=1
1
σ2
i

Var[µ̂N,hom] =
1

n2

n∑
i=1

σ2
i (5)

9



where Var[µ̂N ] ≤ Var[µ̂N,hom], with equality if and only if σi = σ, ∀i.

PROOF. For the two estimators, we have:

Var[µ̂N ] =

∑n
i=1

1
σ4
i
Var[Xi][∑n

i=1
1
σ2
i

]2 =
1∑n

i=1
1
σ2
i

(6)

Var[µ̂N,hom] =
1

n2

n∑
i=1

Var[Xi] =
1

n2

n∑
i=1

σ2
i (7)

The inequality Var[µ̂N ] ≤ Var[µ̂N,hom] follows from Cauchy-Schwartz, and is strict if and only if

the vectors (σ2
1 , ..., σ

2
n) and ( 1

σ2
n
, ..., 1

σ2
n

) are linearly independent. Equality therefore requires that

for some constant c, σ2
i = c

σ2
i
, ∀i. Since σ2

i is non-negative, this is true if and only if σi = σ, ∀i.
As a corollary of this proposition, when a population has heterogeneous Gaussian uncertainty

and there are a few disproportionately uncertain individuals in the crowd, the relative efficiency

of the weighted vsu̇nweighted estimator would be enormous, highlighting the value of knowing

uncertainties when heterogeneity is rampant.

3.1.2 Laplace Uncertainty

We next consider the Laplace uncertainty, where all the individuals signals Si = µ+ εi have noise

terms εi that are Laplace(0, σ2
i ). For this case we have the following proposition:

PROPOSITION 3.3. Given x1, . . . , xn drawn from S1, . . . , Sn where Si ∼ Laplace(µ, σ2
i ) in-

dependently with variance σ2
i known ∀i, the MLE for µ is given by the weighted median µ̂L =

argminm
∑n
i=1

1
σi
|xi −m|.

PROOF. The log-likelihood function is simply:

`(µ; {xi}ni=1, {σi}ni=1) = −
∑n
i=1 ln(σi)−

√
2
∑n
i=1

1
σi
|xi − µ|. (8)

By definition a median of a set of values {x1, ..., xn} is a value, not necessarily unique, that

minimizes the absolute deviation of the set, argminm
∑n
i=1 |xi − m|. Analogously, the weighted

median of the set {x1, ..., xn} with corresponding weights {w1, ..., wn} is a value, not necessarily

unique, that minimizes the weighted absolute deviation of the set, argminm
∑n
i=1 wi|xi −m|. It is

immediately clear that the weighted median maximizes the log-likelihood in (8). �

It is important to highlight that the weights used for the weighted mean of the Normal family

are not the same weights as those used in the weighted median of the Laplace family: the former

uses inverse variance, while the latter uses inverse standard deviation.

3.2 Weights From Interquantile Range

We now show how we don’t need to know the actual variances σ2
i or standard deviations σi in order

to correctly weight the mean or median: because of cancellations in the estimators, any measure

of uncertainty that is uniformly proportional to the variances or standard deviations of a family

of distributions can be used to weight the mean or median estimator, respectively, to achieve the

same statistical efficiency.
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We begin with the following basic observation: for any unscaled uncertainty measures si = cσ2
i ,

with c constant ∀i, the weights wsi = (1/si)/(1/
∑n
k=1 sk). An analogous statement is clearly also

true for uncertainty measures proportional to the standard deviation.

This observation has two practically important consequences for our work. First, if people are

uniformly biased in their estimate of their certainty (e.g. they are uniformly overconfident) we see

it will not impact the quality of our estimator. Second, it implies that eliciting any response with

a known transformation to a quantity that is proportional to the variance (or standard deviation)

can serve as an equally accurate weight for weighted mean (or weighted median) aggregation. In

particular, we now show how within any family of distributions that constitute a location-scale

family, any interquantile range is proportional to the standard deviation of that distribution.

PROPOSITION 3.4. For any random variable X with E[X] = µ < ∞ and Var[X] = σ2 < ∞
with a distribution belonging to a location-scale family F , any interquantile range IQR(X; p, q) =

F−1X (p)− F−1X (q), with p and q fixed, is proportional to the standard deviation,

IQR(X; p, q) = cF (p, q)
√

Var(X).

The constant cF (p, q) depends only on the family F of X but not the specific distribution.

PROOF. Let Z be a random variable with the “standard” distribution of the family F , i.e.

location 0 and scale 1. Then for any random variable X with a distribution in F and E[X] = µ,

Var[X] = σ2, a basic property of location-scale families is that F−1X (p) = µ+ σF−1Z (p),∀p ∈ (0, 1).

We therefore have that:

IQR(X; p, q) = µ+ σF−1Z (p)− µ− σF−1Z (q) = (F−1Z (p)− F−1Z (q))σ,

where cF (p, q) = (F−1Z (p) − F−1Z (q)) is a constant that depends only on the family and the fixed

values of p and q. �

Thus for populations where all belief distributions come from the same location-scale family,

weighting by any IQR is equivalent to weighting by the standard deviation, and weighting by any

squared IQR is equivalent to weighting by the variance. Noe that this does not apply if individuals

have belief distributions that belong to different location-scale families, since the constants can be

different. For the Normal distribution family, cN = 2
√

2Erf−1(1/2) ≈ 1.349 while for the Laplace

distribution family cL = ln(2)
√

2 ≈ 1.386.

3.3 Contamination Models and Robustness

Thus far we have seen that we can elicit quantiles and subsequently use interquantile ranges to

perform certainty-weight aggregation. We now investigate the robustness of the two strategies

we’ve presented: weighted-mean and weighted-median aggregation.

In a seminal series of papers, Tukey [Tukey, 1960] examined the robustness of estimators to

outliers by considering a framework where a set of samples is presumed to come from a certain

distribution, but is in fact “contaminated” with samples from another distribution with much

higher variance. Typically this contamination model framework consists of a mixture of a primary

standard Normal distribution, with samples from N(0, 1), and a contaminating distribution, with

samples from N(0, b), where b is a parameter controlling the variance of the contamination. The

mixture proportion is typically fixed at 80% primary samples / 20% contamination samples, pro-

viding a single parameter (the contamination variance b) to guide an examination of how noisy

outliers can effect the relative efficiency of different estimators.
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Figure 2: Estimators variance for contamination models with 100 samples. Left: a contami-

nated Normal distribution. Center and Right: the same contamination model with partially

misattributed weights. Dashed lines indicate variance under uniform certainty.

In Figure 2 we examine such a contamination model, showing the variance of different estimators

based on 50 total samples from the mixture model, averaged over 100,000 iterations. In this first

panel it is assumed that the identity of the contaminators is known, i.e. all individuals accurately

represent their different certainties. In the second panel the identity of 10% of the contaminators

is misattributed, meaning that 10% of the low-certainty weights are attributed to high-certainty

individuals, and 10% of the low-certainty individuals are given high-certainty weights. In the third

panel, the low-certainty weights are randomly attributed across the population.

From this analysis we observe that the efficiency of our weighted estimators is robust to iden-

tifiable contamination, assuming uncertain guessers say they’re uncertain. If individuals are mis-

characterizing their certainty, however, the efficiency gains are relatively modest. If the certainty

weights are wildly misattributed then the variances for the weighted estimators can be larger than

for the naive unweighted estimators.

3.4 From Guesses to Estimates

We conclude our theoretical contribution with a practical summary of how the various components

of our results assemble guesses to form certainty-weighted aggregations. We continue to assume

individuals hold symmetric log-concave belief distributions all from the same location-scale family.

For each individual i = 1, ..., n we obtain a set of guesses {gi1, ..., gik}, and our goal is to assemble

an estimate of the location, µ̂i, and of the scale, ŝi, for some si ∝ σi. For symmetric distributions

the location can clearly be obtained as the midpoint of any two symmetric quantiles, while for

the scale we’ve previously established in Proposition 3.4 that the scale can be obtained from any

interquantile range. For k = 2 guesses this presents a strategy for assembling individual estimates

from their guesses, µ̂i = 1
2 (gi1+gi2) and ŝi = |gi1−gi2|, allowing us to use the following two estimators

to certainty-weight our wisdom of the crowd aggregation:

µ̂mean = 1∑n
j=1

1

ŝ2
j

∑n
i=1

µ̂i

ŝ2i
, µ̂median = Mw({µ̂i}ni=1; {1/ŝi}ni=1).

For k ≥ 3 guesses, individual estimation can become more complicated. When each individual

provides three or more guesses, we are presented choices in how we choose to assemble µ̂i and ŝi.

We would be justified in basing ŝi on any fixed quantile gap. For µ̂i we would be justified in using

the overall guess mean, or even the mean of any pair of symmetric quantiles. For odd k we would

also be justified in using the median guess g(k+1)/2 as the individual’s µ̂i. We briefly consider these

individual-level choices from an empirical perspective, as given in the next section.
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4 Guessing Experiments

To evaluate the empirical performance of our multiple guesses scoring rule, we implemented an

online estimation game for dot guessing we called the Dot Guessing Game, similar to previous dot

guessing designs [Horton, 2010], and recruited 400 participants from Amazon Mechanical Turk to

play the game in various configurations. As a general premise, participants were presented a series

of images with a large number of dots, see Figure 3, and asked to guess the number of dots in

each of the images. Each user started with a tutorial explaining the game, after which they were

presented with an initial allotment of points. Once the game began, different scoring rules (the

variable condition of the experiment) were used to deduct points based on the user’s performance

on each image. The tutorial explained the scoring rules to participants, and that they would receive

a monetary reward at the end of the game relative to the amount of points they had remaining. A

fixed set of images were generated for each game, with dot counts distributed exponentially over

a range of 25 to 250 dots. There was no time limit for how long someone could spend on a single

image. At the end of the game, monetary bonuses were awarded to participants that had points

remaining.

4.1 Experimental Design

The task of guessing the number of dots in images was chosen for several reasons. Previous wisdom

of the crowd experiments have often studied trivia questions [Lorenz et al., 2011], but because our

study was run in an uncontrolled online setting with monetary rewards, it was important that

the questions not be easily answered based on internet search results. Secondly, because Amazon

Mechanical Turk recruits users from all around the globe, we also wanted to ensure that our

questions were not related to any specific cultural context. Dot counting has been previously used

in other wisdom of the crowd experiments [Das et al., 2013], and deserves consideration as a useful

“model organism” for crowd aggregation research [Horton, 2010].

We conducted two experiments using our Dot Guessing Game platform, each deployed to a

population of 200 participants, to empirically evaluate the elicitation and estimation strategies

presented in this work. In our first experiment, we investigated the performance of the multiple

guesses scoring rule by dividing the game into three sections, configured under a 1-, 2-, and 3-guess

scoring rule. A new tutorial introduced each section to explain and demonstrate each scoring rule.

In our second separate experiment, we used a design involving two sections to investigate the

performance of the two guesses scoring rule as compared to the interval scoring rule. Again a new

tutorial introduced each section to explain and demonstrate each scoring rule.

Feedback was provided to participants after each image was submitted in both experiments.

The feedback displayed the error, the correct answer, and the participant’s current score, allowing

him or her to track their progress throughout the game. The feedback showed the calculations

that went into the deduction to ensure the user knew how they were losing points. The order of

the images and the order of the sections were randomly assigned for each user.

Our two experiments were designed to address specific questions. For the multiple guesses

scoring rules, did the additional information elicited by the additional guesses result in more

accurate estimates of the underlying quantity in practice? When eliciting 3 guesses, how often

are the guesses symmetrically positioned about their median? Do responses under the two guesses

scoring rule bear any semblance to a [25%, 75%] confidence interval, in terms of calibration? How

do the two guesses compare to the responses given under the interval scoring rule? We now evaluate

these questions, discussing the two experiments in detail.
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Figure 3: Experimental results for 1- and 2-guess responses. Left: an image from the game, with

79 dots. Center: bootstrapped distributions of mean and median estimators for the 1-guess (red)

and weighted 2-guess (blue) responses for the 79 dot image. Right: ratios of mean squared error

(MSE) for bootstrapped population of median and mean estimators. The shaded region indicates

dot counts where an “integer constraint” had a pronounced effect, see text. Ratios below 1.0

indicate the weighted 2-guess MSE is lower than the unweighted 1-guess MSE.

4.2 Multiple Guesses Experiment

In this experiment, the game was split into 3 sections, presented in a random order. In each

section, participants were given 1, 2, or 3 guesses for each set of 12 images, where the first 2 images

were tutorial images. Users were not allowed to input the same guess more than once per image

(e.g., they could not submit “100” and “100” as their two guesses for an image). After each image,

the user was penalized based on the distance of their closest guess to the actual number of dots

present, as demonstrated during a tutorial and explained through continuous feedback between

images.

The task was designed to take less than 10 minutes, and users were paid a base rate of $0.50

for participating, plus a bonus based on their score. Each participant started the game with 500

points, which were converted to bonus payments at the end of the game at a conversion rate of $0.01

per 10 points. Of 200 participants, 171 finished with points, receiving an average bonus of $0.20.

Our main analysis and statistical tests are based on the performance of these 171 participants who

finished with points, ensuring that they were properly incentivized by the scoring rules throughout

the game (having not run out of points).

4.2.1 1- and 2-Guess Comparison

In Figure 3 we see the main results of this experiment. The left panel shows a sample image

with 79 dots. The central panels show a distribution of estimators based on a sample size of 47

participants making guesses about this image with 79 dots, bootstrapped with replacement from

the participants who saw this image instance as a “1 guess” question vs. the participants who

saw this image instance as a “2 guess” question. The fixed sample size for each estimator, 47,

was set by the size of the smallest population across all (image, scoring rule) exposure pairs. The

bootstrapped distribution of 2-guess median estimates has less variance than the 1-guess median

estimates, while for mean estimates the 2-guess distribution is significantly less biased but exhibits

roughly equivalent variance.
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Figure 4: Experimental results for 3-guess responses. Left: symmetry of gaps in 3-guess triplets.

Right: ratios of the mean squared error (MSE) for bootstrapped population of differently con-

figured 3-guess weighted median estimators, compared to a 2-guess MSE. The 3-guess MSE does

not vary much between different estimator configurations, and is not clearly better or worse than

the 2-guess MSE. The shaded region indicates dot counts where an “integer constraint” effect is

suspected, see text.

In the right panels of Figure 3, we show the relative mean squared error (MSE) for bootstrapped

populations of 10,000 estimates from each estimator, for each image. The game was run with 30

different images, and overall, we see that weighted medians based on 2 guesses generally performs

significantly better than unweighted medians based on 1 guess responses, with relative MSEs well

below 1.0.

We also observe a clear trend, where the 2-guess median MSE was very high (relative to the

1-guess median MSE) when there were very few dots. We note that this is an artifact of the request

being easy, giving participants high certainty, and the answers being required to be integers; for

example, if a participant is very certain that there are 27 dots in the image, they are forced to

choose between answering {26, 27} or {27, 28}. Our estimators interpret such beliefs as centered

at 26.5 or 27.5, yielding few or no belief distributions that are centered at 27. No 1-guess median

can be anything other than an integer, which makes a comparison of the median MSEs somewhat

unfair in high-certainty scenarios. To avoid this artifact, we focus our statistical tests on images

with more than 50 dots, where there was a notable jump in general uncertainty among users.

The reductions in MSE are significant: the one-sided p-value for a pairwise ratio t-test of the

2-guess median MSE vs. 1-guess median MSE is p = 0.0003, while for the mean estimators the

p-value is p < 0.0001. For completeness, when all 200 participants are included, instead of just the

171 who finished with points, the median and mean estimator p-values are p = 0.012 and p = 0.129,

respectively. This suggests that our results are not robust to participants who “aren’t playing the

game,” and complementary approaches to ensuring worker quality are still advisable in highly

heterogeneous crowds such as the Mechanical Turk general population. A possible estimation-

based approach, not explored, would be to Winsorize the weights [Hastings et al., 1947].

4.2.2 2- and 3-Guess Comparison

Next, Figure 4 examines the behavior of participants when they were asked to make 3 guesses. In

the left panel of the figure we study the symmetry of the guesses: by ordering the three guesses as

(gmin, gmid, gmax), we compare the difference between gmax − gmid and gmid − gmin, finding that
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48.2% of participants positioned their three guesses symmetrically about their middle guess, with

few triplets distributed with large asymmetries. In the right panel, we evaluate the ratio of MSEs

for estimators bootstrapped from the participants who were asked for three guesses compared to

guesses from those asked for two guesses. We consider both gmid and ḡ = 1
3 (gmin + gmid + gmin)

as individual location estimates, while for weights we use gmax − gmin. Estimators weighted by

sample standard deviation
√∑

i(gi − ḡ)2, not shown, were nearly indistinguishable from estimators

weighted by gmax − gmin. This indistinguishability is to be expected since for three symmetric

guesses the standard deviation is proportional to the max-min gap. Results from this panel are

inconclusive; there is no clear benefit or drawback to 3-guess over 2-guesses, except possibly for

low dot counts where the request for 3 guesses appears to avoid the integer constraint effect seen

in 2-guess requests. A more detailed investigation of higher guess-count elicitation is left as future

work.

4.3 Interval Comparison Experiment

In our second experiment, the game was configured with two sections, presented in a random order,

where one section asked participants for 2 guesses for every image, analogous to the 2 guesses

section from the previous experiment, and the other section asked for a [25%,75%] confidence

interval regarding the number of dots believed to be in each image. Participants were not allowed

to provide a confidence interval with a width of 0. In the interval section, points were deducted

according to the interval scoring rule discussed in Section 2.2. The magnitude of the 2-guess

scoring rule was scaled up to deduct 5 times the error (to the closest guess) in points, providing

approximately the same expected point penalty per image as the interval rule (in theory, under

optimal performance with Gaussian belief distributions).

The task was again designed to take less than 10 minutes, and users were paid a base rate of

$0.50 for participating, plus a bonus based on their score. Each participant started the game with

2000 points, which were converted to bonus payments at the end of the game at a conversion rate

of $0.01 per 50 points. Of 200 participants, 149 finished with points, receiving an average bonus

of $0.14. Our main analysis and statistical tests are again based on the performance of these 149

participants who finished with points, ensuring that they were properly incentivized by the scoring

rules throughout the game.

4.3.1 2-Guess and Confidence Interval Comparison

The results of the interval comparison game are presented in Figure 5. In the top left, we see that

the two scoring rules were calibrated equally (poorly). If intervals/guesses were properly calibrated,

these distributions would both be Binomial distributions with n = 10, p = 0.5 (here p is the width

of the requested interval). The estimated probabilities of being inside/between the interval/guesses

were pint = 0.395 and p2g = 0.377, with a test for a difference between these two parameters is not

statistically significant (two-sided p-value 0.5422). We conclude that participants were spreading

out their guesses very similar to a [25%,75%] confidence interval, as predicted theoretically for

symmetric log-concave belief distributions, but still exhibited the typical overconfidence common

in confidence interval elicitation [Keren, 1991].

Another question we were interested in was whether participants took significantly longer time

to respond to the interval scoring rule than the 2-guesses scoring rule. In the bottom left panel of

Figure 5, we see the time spent per image, including the tutorial images. We see that the interval

scoring rule tutorial instructions took users slightly longer to process, but overall response times

were equivalent.
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Figure 5: Results for interval vs. 2-guess comparison. Top left: frequency with which the true

dot count was inside/between intervals/guesses. Bottom left: time taken to play the game. Half

the users played the interval game, then the 2 guesses game; the other half played the 2 guesses

game, then the interval game. Circles indicate medians and error bars are empirical 5th/95th

percentiles of the population. Right: ratios of MSE for bootstrapped populations of 2-guess and

interval weighted median (top) and weighted mean (bottom) estimators. Ratios below 1.0 indicate

the 2-guess-weighted MSE is lower than the interval-weighted MSE.

Lastly, in the right panel we see the ratio of mean squared errors for a population of estimators

bootstrapped from the 2-guess responses and from the interval responses. We see that the 2-guess

scoring rule appears to generate lower error weighted median estimators than the interval scoring

rule, but the differences are not significant under a one-sided paired ratio t-test (p = 0.1011 for

median, p = 0.141 for mean). The “integer constraint” for low dot counts (discussed earlier)

impacts both “2-response” median estimators equally, so all dot counts are considered.

4.4 Discussion

In summary, we observe that the multiple guesses scoring rule is an empirically performative

approach to eliciting uncertainty for weighted wisdom of the crowd aggregations, as performative

as the interval scoring rule. We observe that individuals responded to our guessing game as if

their belief distributions were largely symmetric, and the 2-guesses scoring rule elicited responses

very similar to the interval scoring rule configured for [25%,75%] percentiles, as predicted by our

theoretical analysis under symmetric log-concave belief distributions.

5 Conclusion

It is well known that aggregate predictions from large crowds can rival predictions by experts, but

crowds are generally heterogeneous in their expertise for any given task at hand. In this paper we

have developed and evaluated a new theory of how this heterogeneous “uncertainty of the crowd”

can be elicited and utilized to assemble more efficient predictions. Our investigation involved
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rewarding users according to the multiple guesses scoring rule that scores users in proportion to the

accuracy of their closest of several simultaneous guesses. We have shown that by simply weighting

individuals based on properties of their multiple guesses, estimation error can be significantly

reduced for both mean and median aggregation. By providing both theoretical justifications and

empirical evaluations, we contribute a novel technique for harnessing heterogeneous crowd certainty

in real world crowd estimation tasks.

6 Future Work

Our multiple-guesses elicitation and weighting strategy suggests compelling extensions to existing

crowd inference techniques, and we leave research into extensions such as learning latent reputations

for confidence reporting [Dekel and Shamir, 2009], using multiple guesses in a competitive game

[Lichtendahl Jr et al., 2013], or modifying the Bayesian Truth Serum mechanism [Prelec, 2004] all

as future work. We also leave a formal exploration and analysis for Significant Figure Guessing as

future work.

Looking back at the results of the 2- and 3-guess section (Figure 4) of the Multiple Guesses

Experiment, it can be observed that a majority (48.2%) of users positioned their 3 guesses sym-

metrically about their middle guess. We examined the differences between these two populations

(symmetric and non-symmetric guessers) and as part of separate exploratory work, we wanted to

pose specific questions that would be a great direction for future work. Does the distribution of

the least significant digits follow a known distribution? How does the number of guesses ending

in 0 change as the number of dots in the images increase? Can the number of significant digits in

guesses be used to separate the guessers into distinct weighted populations?
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