
Tabletop Manipulation

Practices and Applications

Dylan Holmes

December 2015

1

Contents

1 Introduction 7

2 System 10

2.1 Hardware . 10

2.2 Framework Development . 13

2.3 Modeling . 15

2.4 Calibration . 17

2.5 System Identification . 19

3 Control Methods 20

3.1 Kinematic Planning . 20

3.2 Trajectory Optimization . 24

4 Task Implementation 25

4.1 Kinematic Planning . 25

4.2 Trajectory Optimization . 26

5 Conclusion 30

2

List of Figures

1 Left: Fully assembled robotic arm. Center: Custom machine

wrist with Openhand end effector. Right: The Yale Openhand

Model T end effector. 11

2 An illustrative diagram of joints 0, 2, and 4 (numbered vertically

downward), which have central axis that align perfectly in the

shown configuration. This is an instance of gimbal lock between

the all three joints (and therefore the loss of 2 degrees of freedom). 12

3 Block diagram of the integrated system, depicting communication

between hardware. 13

4 OpenGL mesh rendering of the model, created using the MuJoCo

physics engine package. 17

5 Demonstration of tabletop manipulation on hardware using kine-

matic planning. The task is to move the coffee cup from one

location on the table to another. 26

6 Image sequence of a reaching task trajectory generated with tra-

jectory optimization. 27

7 Sequence of plots depicting the states and running cost over the

length of the trajectory during different iterations during the op-

timization. Sequence is ordered sequentially top to bottom, left

to right. 29

3

8 Sequence of plots depicting the controls and linear feedback gains

over the length of the trajectory during different iterations during

the optimization. Sequence is ordered sequentially top to bottom,

left to right. 30

4

List of Tables

1 Terms of a cost function used to accomplished a reaching task. . 28

5

Acknowledgements

6

1 Introduction

Tabletop manipulation is a class of problems in robotics which concerns inter-

acting with objects located on top of a table. Such problems have a large variety

of practical application areas such as manufacturing, agriculture and the food

industry.

Tabletop manipulation problems can involve structured or unstructured en-

vironments. In a structured environment, everything about the environment is

known in advance. In terms of tabletop manipulation, this would mean that

the initial state of the environment is known and nothing will unexpectedly

leave or enter the workspace, in other words the environment is essentially a

closed system. An unstructured environment is the opposite of a structured

environment. In terms of table top manipulation, anything could be happening

in environment, for example another person could also be manipulating items

in the same environment.

Some challenges applicable to tabletop manipulation in structured environ-

ments are obstacle avoidance and object interaction through contacts. Obstacle

avoidance encompasses all efforts to not make contact between a manipulator

and an object or between two objects during a task. It is generally a part of

path planning, in which one wishes to find a path through an object riddled

environment without knocking into any of the objects. Interacting with objects

through contacts is one of the most difficult problems in tabletop manipulation

[1]. There are a variety of methods for limiting interaction with objects to sim-

plify the problem. Interaction through contacts is a hot topic at the forefront

7

of state of the art object manipulation research [1]. Unstructured environments

present the additional challenge of an unpredictable environment.

There are a number of known methods for approaching tabletop manip-

ulation problems. Some methods are be more suited towards structured or

unstructured environments.

One of the simplest control methods for tabletop manipulation is kinematic

planning. Kinematic planning methods work by planning trajectories of an end

effector and using inverse kinematics to recover the joint angles. Trajectories

generated by kinematic planners can be executed using PID control. PID control

essentially uses feedback gains to override the system dynamics in order to

achieve a desired joint configuration. This is the same as assuming locally

linear dynamics, which is an appropriate assumption for small displacements.

As velocities increase, so do displacements for a fixed timestep, thus PID control

for tracking the higher velocity trajectories.

The artificial potential field technique is collision free path planning method

invented by Khatib [2]. The idea is to attribute a higher cost to paths that pass

through objects, which allows gradient descent to be used to find the closest

collision-free path given an initial path. Because this approach relies on gradient

descent, which is a local optimization method, it is subject to local minima.

CHOMP, short for Covariant Hamiltonian Optimization for Motion Plan-

ning, is a motion planner that is capable of optimizing higher-order dynamics

of trajectories in real-time [3]. CHOMP accomplishes this by refining an initial

sampled trajectory using a covariant gradient descent and relies on the assump-

8

tion of a sparse distribution of obstacles for better performance. STOMP, short

for Stochastic Trajectory Optimization for Motion Planning was later devel-

oped as an extension of CHOMP, which relies on generating noisy trajectories

for space exploration [4].

Optimal control theory is a computational framework that formalizes con-

trol problems mathematically as optimization problems, allowing one to find a

control policy that is optimal with respect to a given cost function [5]. Using a

cost function allows tasks to be specified declaratively, by designing the terms

of a cost function using intuitive mathematical analogies derived from the goal

of the task itself.

Like many problems in engineering, selecting a control strategy for a partic-

ular tabletop manipulation application depends on multiple factors. For struc-

tured environments, such as in a factory, a simple kinematic planner and PID

control may be simple enough. For other research and development applica-

tions, such as working in an unstructured environment and in the presence of

humans or animals, kinematic planning may not be enough and more advance

method may be required.

The work in this thesis summarizes my undergraduate research experience in

applying model-based control on a robotic manipulator. My experience focused

on the control aspects of tabletop manipulation, but also heavily relied on all

aspects of practical robotics including modeling, calibration, system identifica-

tion, communication, and robotic framework development. My project revolved

around applying known control methods to the simple, yet high level tabletop

9

manipulation task of picking up a coffee cup from a table and placing it back

down in a structured environment.

This paper is organized as follows. The following section gives an overview

of the system, including the hardware, framework development, modeling, and

system identification. Section 3 outlines the basics of control methods applied

during the project. Section 4 covers the actual application of control methods

towards a tabletop manipulation task. Section 5 concludes the paper.

2 System

2.1 Hardware

The robotic arm is composed of a ceiling mounted 4-DOF Barrett WAM arm,

custom machined 3-DOF wrist, and 3D printed 8-DOF Yale Open Hand Model

T [6, 7]. As a whole, the arm has 15 degrees of freedom. The arm and wrist are

fully-actuated and account for 7 of the 15-DOFs. The hand is underactucted,

with only one actuator controlling all of it’s 8 DOFs (2 DOFs per finger, 4

fingers). The assembled system can be seen in figure 1. The Barrett WAM

arm uses high velocity brush-less motors with a cable driven winch system to

achieve very high compliance. The arm is capable of millimeter repeatability in

theory, which turned out to be around 2cm in practice. The arm has a minimum

joint resolution 0.005 degrees. The wrist and hand use dynamical MX-64 servo

actuators, which support current-based torque control. The dynamixel joint

encoders are capable of 0.087 degree resolution. The wrist’s actuator supplying

10

pronation/supination movements is housed in a custom machined steel casing,

designed specifically as an attachment for the WAM arm.

Figure 1: Left: Fully assembled robotic arm. Center: Custom machine wrist with

Openhand end effector. Right: The Yale Openhand Model T end effector.

Gimbal lock, the loss of one degree of freedom, occurs between joints 0, 2, and

4 when their central axis line up. This is illustrated in figure 2. The jacobian,

which relates joint velocities to end effector velocities, becomes singular when

gimbal-lock occurs. For kinematic planners that use the Jacobian to translate a

direction in terms of the end effector to a direction in joint space this is less than

favorable because planning through them can result in erratic, unpredictable

behaviors. Such singularities inside the configuration space also require special

attention with optimal control methods as well. When designing a cost function,

singularities can prevent the optimizer from being able to find a gradient.

11

Figure 2: An illustrative diagram of joints 0, 2, and 4 (numbered vertically downward),

which have central axis that align perfectly in the shown configuration. This is an

instance of gimbal lock between the all three joints (and therefore the loss of 2 degrees

of freedom).

The Yale Openhand model T is a light weight open source end effector,

designed as a 3D printed version of the original SMD Hand [7]. A single actuator

provides a gripping motion to four underactuated finger. The resulting grasp

naturally conforms to objects of varying shape without intelligent control.

During system identification and calibration, I used the Phasespace motion

capture system. The Phasespace motion capture system is capable of tracking

at 480Hz through the use of an active infrared LED marker system. The system

has 8 cameras, each of which has a resolution of 12 Megapixels [8].

The integrated system was distributed over three separate computers. Con-

trol and synchronization is achieved by integrating device data on one com-

12

puter, which communicates with the WAM’s low level controller through a CAN

bus, Dynamixel through USB, and the Phasespace through Ethernet. A block-

diagram depiction of the integrated system can be viewed in figure 3.

Figure 3: Block diagram of the integrated system, depicting communication between

hardware.

2.2 Framework Development

Systems integration is an integral part of any robotics endeavour. From a phys-

ical perspective, robots are most often a composition of many different devices,

with different manufacturers, interfaces, latencies, update rates, precisions, and

repeatabilities. Post-manufacturing, there is really little one can do to improve

the quantitative features, which means that one may be limited to the lowest

common denominator in the integrated system. For example, a system with one

component that has a very large latency and you need to plan a trajectory for

the entire system, you may not be able to take advantage of the lower latency

provided by the other components. Some devices may not even include a device

13

driver for you platfom. Luckily, all of the devices used during the course of

this project were developed enough to come with manufacturer implemented

drivers and APIs. From a software perspective robots rely on a wide variety

of different software components, such as the device drivers mentioned, com-

munication software for distributed applications, user interfaces for testing and

development, and control software. Most of these software component need to

be running simultaneously, thus safely handling of concurrency is important to

ensure the low latency that is desirable for running high fidelity trajectories.

The developed framework focused on several features: system abstraction,

latency, concurrency, and communication.

System abstraction was needed primarily for system integration purposes. It

is more useful to be able to treat the manipulator as a single piece of hardware

rather than a slew of components, each of which must be controlled separately.

For this purpose, the first step was to create a single interface that abstracts

out the device details. However the abstracting low level details must be done

with care to achieve low latency and safe concurrency practices.

To abstract a fragmented robotic system while not adding latency to any of

the low level controllers, my solution was to add a layer of indirection between

the main control thread and the device drivers. This layer of indirection is

simply a thread for each device, which acts as a proxy between the main loop

and the device. This prevents a device from blocking communication with other

devices, by avoiding attempting to read or write to any devices directly from

the main control thread.

14

Only using seperate threads does not completely eliminate the possibility

for another thread to block the main thread however. Data still needs to be

synchronized safely between concurrent threads through the use of mutexes,

which present another possibility of blocking the main thread. To prevent this,

I added double buffers to proctor communication between the main thread and

the device threads ensures that main thread can not be blocked by a busy device.

Double buffers achieve this by limiting the amount of data being manipulated

while locking the mutex from the main thread to a single pointer.

Communication was needed to ease development by allowing remote control

of the main control process from outside applications such as user interfaces.

This part is important not only for interactive development, but is also impor-

tant for monitoring activity by plotting data and visualizing simulations.

2.3 Modeling

Model-based control relies on a complete mathematical description of a dynamic

system, which is used to develop control strategies accordingly. This mathemat-

ical description must represent all of the kinematic and dynamic properties of

the system. The most common approach involves modeling a robotic system as

rigid bodies connect by joints to form an articulated rigid body. This is the ap-

proach taken by the physics engine of choice, MuJoCo, which is used throughout

this project.

The MuJoCo physics engine greatly simplifies the modeling process [9]. In-

stead of approaching modeling the kinematic and dynamic properties of the

15

system as an ad-hoc procedure, MuJoCo has developed it’s modeling format

to encompass the minimum required parameters for state of the art algorithms

used in articulated rigid body simulation with joints and contacts. Modeling

with MuJoCo consists of working in a readable XML format, that allows the

specification of kinematics properties such as link lengths and geometry, and

dynamic properties such as inertial properties in a single file. MoJoCo’s API

also comes equipped with OpenGL visualization routines. A view of the finished

model of the robotic arm can be seen in figure 4.

Initially, model parameters are gathered from manufacturer data sheets if

available and measured by hand if applicable. Some model parameters such

as joint armature that are either not directly measurable or too difficult to

measure because of workspace constraints, must be estimated relative to the

other aspects of the model and simulation performance. System identification

is the next step in the modeling process, which uses data driven techniques to

find the values of unknown model parameters, which is the subject of an section

2.5.

16

Figure 4: OpenGL mesh rendering of the model, created using the MuJoCo physics

engine package.

2.4 Calibration

A sufficient model for the particular application must be accurate enough to

allow manipulation of objects on the scale of 5 to 10cm. Given that the end

effector is capable of gripping a sphere of at most 12cm in diameter, this leaves

approximately +/-1cm room for error. Therefore the preliminary goal was to

improve the accuracy of the end effector to a maximum error of +/-1cm. The

error in the end effector is a result of two types of errors. Improperly calibrated

sensors are one source. Modeling error is another source, although the type

of modeling error depends on the control strategy used. Kinematic planning

control methods that rely in PID control only rely on kinematic model param-

eters. Control methods that rely on accurate dynamics parameters will have

17

error from them as well.

The calibration process concerns finding the parameters, ĉ, which minimize

the error between a calibration function calibs(q, c) for sensor s given those

parameters and set of sensor values q and true values q̂. The true values are

never known precisely, but are instead taken from another measurement device

that is assumed to be closer to the true value than the original device, in other

words another calibrated device.

ĉ = argmin
c
||q̂ − calibs(q, c)

∣∣∣∣∣∣ (1)

All of the devices used in this project came with calibration procedures specified

by their manufacturers. Calibration of the system was performed intermittently

throughout the course of the project as needed.

Coordinate system registration is the process of finding an affine transfor-

mation between two coordinate systems [10]. The Phasespace motion capture

system and MuJoCo physics engine each have their own coordinate system.

Thus an affine transformation is needed in order to get the location of a mocap

marker relative to the model. Coordinate system registration can be considered

part of the calibration process. This was accomplished by constructing a frame

in the model coordinate space, getting the corresponding frame in the motion

capture space, then finding the transformation between the two. An alternative

approach is to use forward kinematics to get a coordinate transformation while

simultaneously performing system identification.

18

2.5 System Identification

In it’s most general sense, system identification is the process of building a

description of a dynamics model from data. Luckily, the system at hand is a

special case, it has a model described by physics, and only the true values of

the model parameters need to be identifiedd. This can be approached as an a

nonlinear optimization problem, in which we wish minimize the error between

a recorded trajectory and predicted trajectory given a set of model parame-

ters. For kinematic parameters, the error between trajectories is taken to be

the sum of square differences between a recorded trajectory of motion capture

marker positions, r and marker positions as predicted by the model given the

corresponding recorded joint angles, forward(m, q).

m̂ = argmin
m

∣∣∣∣∣∣r − forward(m, q)
∣∣∣∣∣∣ (2)

.

Identifying parameters was done on a need to know basis, due to the large

amount of model parameters (on the scale of hundreds), many of which have

little effect on certain tasks.

One additional parameter not included explicitly in the model is the latency

of motion capture data collection, which can be established by optimizing over

a shift in the data collected from the motion capture system and the state

trajectory.

19

3 Control Methods

3.1 Kinematic Planning

A common method for generating trajectories, is keyframe interpolation. A

keyframe is a single frame of a trajectory at a certain time. Keyframe interpo-

lation forms a trajectory by interpolating multiple keyframe together through

time.

Here I describe a kinematic planner implementation that was used during

this project. This kinematic planner uses an augmented version of keyframe

interpolation to generate a trajectory of joint configurations. The generated

trajectory can then be executed on the manipulator using PID control. The

keyframes can be specified in terms of the end effector in the workspace or in

terms of specific joint positions. This process involves three steps, generating an

initial trajectory from the keyframes, optionally converting the initial trajectory

into a trajectory of joint positions if the initial trajectory was specified in terms

of the end effector in the workspace, and ultimately running the trajectory on

the hardware using PID control.

In generating trajectories, we want them to be smooth, satisfy kinematic and

dynamic constraints, avoid objects (if desired), as well as be dynamically stable.

This interpolation method assumes that the kinematic constraints are being

considered before input. The dynamic constraints and stability will be satisfied

as long as resulting trajectory is not too fast, since it is intended to be run

using PID control. Smoothness, however, must be handled here. Defining this

20

as an optimization problem, the smoothness of a trajectory can be interpreted

as minimizing the square jerk over the duration of a trajectory [11]. Jerk,
...
x , is

defined as the third derivative of position with respect to time:

...
x =

d3x

dt3
(3)

The smoothness over a trajectory from initial state (xt0 , ẋt0 , ẍt0) to final state

(xtf , ẋtf , ẍtf) is then defined as:

∫ tf

t0

...
x 2dt (4)

Since this term includes an integral, finding the resulting minimum jerk trajec-

tory can be solved by minimizing the functional:

H(x) =
1

2

∫ tf

t0

...
x 2dt (5)

Techniques for minimizing functionals come from the calculus of variations.

First we define a variation, η(t), such that (ηt0 , η̇t0 , η̈t0) = (ηtf , η̇tf , η̈tf) =

(0, 0, 0). This will allow the variation to leave the boundary conditions of the

desired trajectory as we defined them. Replacing x by the variation x 7→ x+eη:

H(x+ eη) =
1

2

∫ tf

t0

(
...
x + e

...
η)2dt

dH(x+ eη)

e
=

∫ tf

t0

(
...
x + e

...
η)

...
η dt

dH(x+ eη)

e

∣∣∣
e=0

=

∫ tf

t0

...
x

...
η dt

21

Then applying integration by parts three times to simplify the right hand side:

∫ tf

t0

...
x

...
η dt

...
x η̈
∣∣∣tf
t0
−
∫ tf

t0

x(4)η̈dt

−
∫ tf

t0

x(4)η̈dt

−x(4)η̇
∣∣∣tf
t0

+

∫ tf

t0

x(5)η̇dt∫ tf

t0

x(5)η̇dt

x(6)η
∣∣∣tf
t0
−
∫ tf

t0

x(6)ηdt∫ tf

t0

x(6)ηdt

Shows that following property is true for any functional, η(t):

H(x) =

∫ tf

t0

x(6)ηdt = 0 (6)

Thus any trajectory with initial state (xt0 , ẋt0 , ẍt0) to final state (xtf , ẋtf , ẍtf)

will have minimum jerk when the sixth derivative of position with respect to

time is zero. This is gives us the differential equation:

x(6) = 0 (7)

The general solution of which is:

x = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (8)

Using the derivatives of x, we end up with a system of linear equations that can

give us a minimum jerk trajectory for any initial state (xt0 , ẋt0 , ẍt0) and final

22

state (xtf , ẋtf , ẍtf):

1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t3f 5t4f

0 0 2 6tf 12t2f 20t3f





a0

a1

a2

a3

a4

a5



=



xt0

˙xt0

ẍt0

xtf

˙xtf

ẍtf



(9)

Thus, x(t) for any t0 ≤ t ≤ tf :

x(t) =



0

t

t2

t3

t4

t5



T 

1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t3f 5t4f

0 0 2 6tf 12t2f 20t3f



−1 

xt0

˙xt0

ẍt0

xtf

˙xtf

ẍtf



(10)

If the input keyframes were in terms of end effector configurations, then

the trajectory must be converted into a trajectory of joint positions. This is

done using the extended Jacobian control method [12]. Inverse kinematics may

possibly have zero, one, or many solutions, thus a nominal pose is required as

a regularizer, to select a preferred solution from the Jacobian’s pseudo-inverse

nullspace.

This suffices being able to generate trajectories offline for execution via PID

control. It is possible, however, to take this approach further and construct

feedback control system that will always be executing a minimum jerk trajectory

23

given a target final state, for details see [13].

3.2 Trajectory Optimization

Trajectory optimization is the process of minimizing a given cost function over a

trajectory of states and controls of a dynamic system. The cost function can be

designed to produce trajectory for solving arbitrary tasks that are only limited

by the inherent properties of the system and the corresponding model. Methods

for solving trajectory optimization problems can lumped into two categories:

direct methods and indirect methods. Direct methods are numerical methods

for solving approximate optimal control problems using nonlinear programming.

Indirect methods consist of both analytical and numerical methods for solving

trajectory optimization problems and are derived from calculus of variations or

Pontryagin’s maximum principle.

To see the formulation of an example optimal control problem, consider a

discrete time dynamic system with state x ∈ Rn, control u ∈ Rm and system

dynamics ẋ = f(t, u, x). We can define an optimal control problem for this

system from time t0 to time tf as follows:

J = Lf (x(tf)) +

tf−1∑
t=t0

L(t, x(t), u(t)) (11)

subject to:

ẋ = f(t, u, x), x(t0) = x0 (12)

This defines a cost functional as a composition of a running cost L : (x, u, t) 7→ R

and special terminal cost Lf : (x, u, t) 7→ R for handling the terminal state

24

separately.

4 Task Implementation

4.1 Kinematic Planning

Kinematic planning methods are commonly used in conjunction with state ma-

chines to perform high level tasks. This is done by systematically breaking

up the task into possible states, then by defining the transition between those

states. For grasping transitions, the kinematic planner can be used to generate

trajectories in joint space. For reaching transitions, the kinematic planner can

be used to generate trajectories of the end effector in the workspace.

To test the kinematic planner outlined earlier, I designed a state machine

to pick up a coffee cup from a pre-specifed location, then place it at another

pre-specified location, which worked as designed. A sequence of video frames

depicting the trajectory execution is shown in figure 5.

25

Figure 5: Demonstration of tabletop manipulation on hardware using kinematic plan-

ning. The task is to move the coffee cup from one location on the table to another.

4.2 Trajectory Optimization

Using Matlab software packages developed with [5], I was able to approach

solving the pick and place task from an optimal control perspective. The pack-

age consists of an implementation of a trajectory optimization method called

control-limited differential dynamic programming, which is an indirect method

for solving trajectory optimization problems. The software only requires you

to specify the system dynamics, cost, and associated derivatives. Used in con-

junction with MuJoCo; it is even easier. MuJoCo, being a physics engine, can

compute the system dynamics and it’s derivative for the optimizer. In addition,

MuJoCo has an extension to it’s XML modeling format which allows the cost

function to be specified in XML as well. This provides a readable, structured

26

environment that allows the user to focus on developing cost function instead

of associated plumbing.

Figure 6: Image sequence of a reaching task trajectory generated with trajectory opti-

mization.

Figure 6 shows an image sequence taken of the robotic arm performing a

reaching task, in which the target is the red sphere. The trajectory was pro-

duced using trajectory optimization. Terms from the cost function for this

particular trajectory are given in table 1. Figures 7 and 8 each depict a se-

quence of plots during the optimization process. Each plot in figure 7 shows the

states and running cost over the length of the trajectory at different iterations

during the optimization, starting from the beginning of optimization from top

to bottom, left to right. Similarly, each plot in figure 8 shows the controls and

linear feedback gains. The total time taken during the optimization process was

roughly 5 seconds, with plotting consuming approximately 90% of the run-time.

27

quantity norm coefficient

control quadratic 1×10−4

momentum quadratic 1×10−4

distance from nominal pose quadratic 1×10−4

distance from target to end effector quadratic 1

Table 1: Terms of a cost function used to accomplished a reaching task.

Designing cost function is more of an art than a science. Half of the process

is intuition based on domain knowledge and experimentation, and the other

half is tweaking parameters when you know you’re on the right track. The first

step is to translate the goal of the task into a physical metaphor in the form

of a term in the cost function. For example, in designing a cost function to

perform the reaching transition from the state machine in the section 4.1, the

first term would be exactly the quantity you care about, the distance between

the end effector position and target position. This is essentially achieving the

same end result as the kinematic planner from section 3.1, apart from the path.

There are differences however. This naive approach will most likely produced

an undesirable trajectory, but logically so. The optimizer only cares about the

cost, exactly as specified. It will do what ever it can to reduce it. This means for

example, not penalizing control can result in an aggressive, forceful trajectories.

This is because it would be suboptimal for the optimizer to not exploit it’s

freedom and get to the target as fast as possible to keep the total cost down.

28

Intuitions such as the example above come quite naturally through exper-

imentation. An additional bonus to this method is that once a cost function

is found that accomplishes at task, it can then be augmented to perform it

in alternative styles. For example in the reaching task, you may decide that

movement efficiency is more important and you can slowly crank up a cost on

energy.

Figure 7: Sequence of plots depicting the states and running cost over the length of

the trajectory during different iterations during the optimization. Sequence is ordered

sequentially top to bottom, left to right.

29

Figure 8: Sequence of plots depicting the controls and linear feedback gains over the

length of the trajectory during different iterations during the optimization. Sequence

is ordered sequentially top to bottom, left to right.

5 Conclusion

This main goal of this work was to give an overview of the aspects of apply-

ing model-based control to a tabletop manipulation problem. Throughout the

process I touched on the practical areas of robotics such as hardware, frame-

work development, the modelling process, as well as control strategies to present

an overall introductory picture to tabletop manipulation. Applications of two

different control methods towards the same task were attempted to highlight

30

the different practical aspects of choosing a particular control method for an

application.

References

[1] Kumar, Vipin, et al., ”Real-time behaviour synthesis for dynamic Hand-

Manipulation” in Robotics and Automation (ICRA), 2014 IEEE Interna-

tional Conference on, IEEE, 2014.

[2] Khatib, Oussama. ”Real-time obstacle avoidance for manipulators and mo-

bile robots.” The international journal of robotics research 5.1 (1986): 90-98.

[3] Ratliff, Nathan, et al. ”CHOMP: Gradient optimization techniques for ef-

ficient motion planning.” Robotics and Automation, 2009. ICRA’09. IEEE

International Conference on. IEEE, 2009.

[4] Kalakrishnan, Mrinal, et al. ”STOMP: Stochastic trajectory optimization

for motion planning.” Robotics and Automation (ICRA), 2011 IEEE Inter-

national Conference on. IEEE, 2011.

[5] Tassa, Yuval, Nicolas Mansard, and Emo Todorov. ”Control-limited differen-

tial dynamic programming.” Robotics and Automation (ICRA), 2014 IEEE

International Conference on. IEEE, 2014.

[6] Barrett Technology Inc. ”WAM Arm datasheet” Feb. 2011.

31

[7] Ma, Raymond R., Lael U. Odhner, and Aaron M. Dollar. ”A modular, open-

source 3d printed underactuated hand.” Robotics and Automation (ICRA),

2013 IEEE International Conference on. IEEE, 2013.

[8] PhaseSpace Inc., http://phasespace.com/

[9] Todorov, Emanuel, Tom Erez, and Yuval Tassa. ”MuJoCo: A physics en-

gine for model-based control.” Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on. IEEE, 2012.

[10] Bachrach, Jonathan, and Christopher Taylor. ”Localization in sensor net-

works.” Handbook of sensor networks: Algorithms and Architectures 1

(2005).

[11] Shadmehr, Reza, and Steven P. Wise. The computational neurobiology of

reaching and pointing: a foundation for motor learning. MIT press, 2005.

[12] Buss, Samuel R. ”Introduction to inverse kinematics with jacobian trans-

pose, pseudoinverse and damped least squares methods.” IEEE Journal of

Robotics and Automation 17.1-19 (2004): 16.

[13] Hoff, Bruce, and Michael A. Arbib. ”Models of trajectory formation and

temporal interaction of reach and grasp.” Journal of motor behavior 25.3

(1993): 175-192. Bruce Hoff, Michael Arbib, ”Models of Trajectory Forma-

tion and Temporal Interaction of Reach and Grasp,”

32

[14] GFantoni, Gualtiero, et al. ”Grasping devices and methods in automated

production processes.” CIRP Annals-Manufacturing Technology 63.2 (2014):

679-701.

33

