
A Web Based Tool for Labeling the 3D

World
by

Aaron Scott Nech

Supervised by Steve Seitz and Richard Newcombe

A senior thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Engineering

With Departmental Honors

Computer Science & Engineering

University of Washington

November 18, 2015

Presentation of work given on

Thesis and presentation approved by

Date

i

Abstract

Through a large increase in 3D sensing becoming available to consumers, we have been moti-

vated to tackle the problem of a computer understanding 3D scenes as humans do. In particular,

one central sub-problem is identifying which objects are present in a 3D scene. To solve this prob-

lem in a general setting, we propose using prediction algorithms learned over a large storage of

labeled 3D scenes. To produce such a set of data, we require a novel 3D labeling tool that is easily

expandable and freely accessible by researchers around the world.

In our work, we create this tool to provide the ability to add semantic labels to an otherwise

static view of the virtual world. For example, after scanning an office room, the entirety of that

room will be reconstructed into a 3D model. The model can then be annotated to specify precisely

which parts of that 3D geometry correspond to objects such as coffee cup or office chair. With

emerging rendering and computational power in web browsers, this tool targets the web platform

utilizing a full 3D viewer to manipulate and label 3D scenes. We create easy to use labeling tool

which allows us to outsource this 3D labeling to a broader community.

ii

Table of Contents

1 Introduction and Discussion 1

1.1 Related Work . 1

1.2 Key Goals In a Labeling Tool . 2

2 Tool Usage By Labelers 2

2.1 Labeler Start and Tutorial . 2

2.2 Navigation . 3

2.3 Using the Smart Fill Tool to Label Walls and Floors 3

2.4 Erasing Labels and the Undo Redo System . 3

2.5 The Pressure Brush Tool . 4

2.6 Shape Segmentation Tools . 4

3 Tool Usage and Expansion By Developers 4

3.1 Project Packaging and Build System . 5

3.1.1 Node Package Manager . 5

3.1.2 Gulp Project Compilation . 5

3.2 Instance Based Construction . 5

3.2.1 Top Level Exposure . 6

3.2.2 Construction and Options . 6

3.3 Server Integration . 6

4 Implementation Details 7

4.1 Model-View-Controller (MVC) . 7

4.2 Navigation and Control . 7

4.3 Tutorial System . 7

4.3.1 Communication System . 8

4.3.2 Tutorial Scripting System . 8

4.4 Labeling Tools . 8

4.4.1 The Navigation Tool . 8

4.4.2 The Pressure Brush Tool . 8

4.4.3 The Smart Fill Tool . 9

4.4.4 The Erase Tool . 9

4.4.5 Shape Segmentation Tools . 10

4.5 Undo and Redo System . 10

4.6 Layer Label System . 10

4.6.1 Hiding and Showing Layers . 10

4.7 Server Connection . 11

4.7.1 Model Loading . 11

4.7.2 Model Saving . 11

4.8 Browser Technologies . 12

4.8.1 ThreeJS, WebGL, and Shaders . 12

4.8.2 Web Workers . 12

5 Future Work 13

6 Conclusion 13

iii

7 Acknowledgments 13

8 References 13

iv

1 Introduction and Discussion

Humans are very good at recognizing objects. In one study, Biederman indicates that humans can

recognize over 30000 categories of objects [Biederman, 1987]. Historically, recognition has been

hard for computers. Even in 2D, recognition tasks have only succeeded in a small number of

categories until recent years (for example, digit recognition); computers simply lacked the datasets

necessary to sustain accuracy over larger sets of object categories. This has improved greatly as

tools and projects such as LabelMe [Russell et al., 2008] and ImageNet have increased the amount

of ground-truth labeled datasets available for 2D recognition training. Projects such as ImageNet

have curated large labeled datasets allowing researchers to benchmark various algorithms. This

acts as a catalyst for computer recognition research. In recent years, convolution based neural

network approaches utilizing large quantities of data have had success in various benchmark tests.

As a whole, big data approaches have won over previous approaches to solving recognition tasks

[Krizhevsky et al., 2012]. These approaches tend to give more robust and accurate models across

a wider range of categories and problems.

Similarly, we believe that the 3D recognition problem currently suffers from a lack of labeled

data, and that big data approaches can enable solving recognition problems in a very general

setting. As more 3D sensing technology becomes available to consumers, we believe there will be

a large amount of unlabeled 3D geometry. Annotating this data can help remove limitations on

researchers to benchmark and test various 3D computer vision research. The ability for machines

to understand the 3D world has very wide applications. Similar to how ImageNet and LabelMe

moved 2D recognition forward, we expect a 3D labeling tool to enhance tasks fueled by 3D data.

In the broad sense, a 3D annotated database can enable and catalyze research in the fields of

robotics, transportation, visualization, accessibility, and communication.

For example, a better understanding of 3D geometries can enable precision navigation systems

in robotics which has many rescue and transportation implications. Furthermore, as virtual re-

ality technology progresses, the ability for programs to understand 3D geometry opens up many

opportunities to enable powerful experiences for users.

1.1 Related Work

Crowd sourcing [Howe, 2008] allows large scale participation in tasks enabled by the Internet. It

has been successful in a wide range of applications. For example, many fields have used Amazon’s

Mechanical Turk to crowd source user studies [Kittur et al., 2008]. Annotation tasks can also

benefit from crowd sourcing. Large scale recruitment of users to annotate raw data has quickly

been adopted in recent years for supervised machine learning tasks [Hsueh et al., 2009]. Although

a general audience can have trouble with more complex tasks (such as our 3D labeling tool), the

principles of crowd sourcing remain very valuable to annotate data. A possible work around is to

curate a more specialized group of individuals to annotate geometry. Creating tools that are web

based allow easy integration with web based crowd sourcing platforms such as Mechanical Turk.

An example of using web-based tools for data annotation is LabelMe [Russell et al., 2008], a

prominent tool in the 2D labeling space. It follows a similar philosophy we adopted for using web

technology to enable easy access and portability of the labeling tool. LabelMe does not, however,

allow labeling of 3D geometry.

1

Another popular tool from UC Irvine is Vatic [Vondrick et al., 2011], a web based video anno-

tation tool. This tool also targets a browser environment to allow widespread crowd sourcing of

annotations for video media. It is also flexible in the sense that it can be used offline for a curated

set of expert annotation participants.

Besides related annotation tools, recent advances in 3D reconstruction techniques such as

KinectFusion [Izadi et al., 2011], have given us the ability to produce accurate 3D geometry from

RGBD video. Reconstruction techniques are already being applied to produce accurate indoor

geometry [Henry et al., 2012]. As RGBD sensors become cheaper and more ubiquitous we expect

this trend to continue and produce a large amount of 3D data analogous to the high volume of 2D

images produced after RGB cameras became ubiquitous.

1.2 Key Goals In a Labeling Tool

In our labeling tool, there are three major design goals in mind. In particular, the tool must be

easy to use by both developers and labelers, supported on a common accessible platform (allow-

ing easy integration with crowd sourcing platforms), and provide useful data to computer vision

researchers. Ease of use for a developer and labeler are two very different concepts. For devel-

opers, the tool provides a flexible Model-View-Controller (MVC) architecture that can be easily

expanded, and implementation generality (making no little server assumptions). Thus the tool can

be easily integrated into many projects.

For client side integration, we created an easy to use JavaScript Application Programming

Interface (API), which exposes many tool settings, both fine and coarse in granularity. This allow

developers to adapt the tool to their particular research needs.

To provide useful data to researchers, the tool both imports and exports the PLY model format

which is widely used in academia. The tool applies an efficient scheme for PLY models such that

they can store label information on a per-vertex basis with minimum space cost. The label models

can then become labeled input for training algorithms and other research applications.

2 Tool Usage By Labelers

In this section we begin by introducing the interface the user is presented with, and then proceed

to discuss the process by which a labeler can label a simple lounge. Along the way we will discuss

each particular labeling tool, and their individual design considerations from a user experience

prospective.

2.1 Labeler Start and Tutorial

When a user lands on a page for the first time, the user will be immediately greeted by the first

stage in the tutorial (if one has been set up by the developer). The labeling system will also fetch

the unlabeled model. Once the model is loaded it will be displayed in the center of the user’s

screen and be ready for interaction via the various labeling tools. In our example, the user will

be presented with the view of a unlabeled lounge model produced by a KinectFusion based 3D

reconstruction algorithm obtained from a source video of a lounge.

2

Figure 1: Tutorial system and pressure brush. Left: The tutorial system displays a scripted

dialog system to the user, and highlights various UI components. Right: The pressure brush uses

an algorithmic approach to avoid painting up hard angles common in rooms and other artificial

geometry.

2.2 Navigation

Once the tool has loaded, and tutorial has been complete (if applicable), the user has a variety of

tools at their disposal. The navigation tool is used for moving around the unlabeled lounge. First

a user can navigate to a suitable view where they can easily click on all lounge floors and walls

by pressing the left mouse button and dragging to rotate the view (using standard quaternion

trackball behavior). Once rotated, the user can press the right mouse button and drag to pan the

center of the view in three dimensions with respect to their current rotation to further navigate.

Once positioned, the user can utilize the scroll wheel to position the zoom level of the camera such

that the walls and floors of interest are comfortably in place.

2.3 Using the Smart Fill Tool to Label Walls and Floors

The smart fill tool is used to label flat surfaces similarly to how a 2D “paint bucket” tool fills in

bordered 2D image boundaries. The goal of this tool was to provide a way to quickly hide walls

and floors in a room. The user can click the smart fill tool, and then select the appropriate label

(floor for example), from the label selection picker located in the top left. Once selected, the user

can click space on each wall and floor in the lounge geometry to quickly mark the floors and walls

with the appropriate label. The user can then hide these layers to focus marking the rest of the

geometry. Since the walls and floors are hidden, it becomes much easier to target the vertices

belonging to objects in the room.

2.4 Erasing Labels and the Undo Redo System

In the event that a user makes a mistake while labeling, we created a robust undo and redo sys-

tem to allow users to recover in these situations. An undo button will appear after an action

that is undo-able has taken place. The button can be clicked, or alternatively the user can press

the control (or command) key and Z in combination to undo. A redo button will appear after a

change is undone, this button can be clicked or the user can press the control key and Y again in

combination to perform the redo.

In the event that a undo change batch is too large (each entire paint stroke is batched as one

3

Figure 2: Typical process to start labeling a room. Left: First one can use the fill tool to label

large flat surfaces such as the floor. Center: Second, the labeler can hide the floor using the hide

label button in the top left. Right: The labeler can then use tools such as the box selector to

select remaining objects in the room such as the table.

undo change for example), the user is offered an erase tool to select areas of the model which

should be unlabeled.

2.5 The Pressure Brush Tool

The goal of the pressure brush tool is to provide a way to automatically “color in the lines.” In 2D

for example, if a user was provided a coloring book that is blank, it would be nice if the labeling tool

(a crayon for example) hugged the lines to easily fill in sections. The pressure brush tool attempts

to mimic this effect in 3D. Since artificial geometry (primarily what we aim to label) has many

90 degree angles that separate distinct surfaces, using these angles as the 3D coloring lines is useful.

When the user applies the pressure brush, it expands around angles gradually such that longer

times spent applying the brush will eventually over come these 90 degree angles. The result is

the brush very naturally fills in distinct surfaces while being resistant to flooding into distinctly

different areas.

2.6 Shape Segmentation Tools

The goal of the set of shape segmentation tools is to provide a easy way to enclose a set of geometry

which naturally corresponds to geometry primitives. For example, a chair can naturally fit inside

a box. For the room use case, the shape segmentation tools are most useful after walls have

been removed. For example, the user can first remove the walls as described in the Using the

Smart Fill Tool to Label Walls and Floors section, and then once removed use the shape

segmentation tools to enclose the objects in the room and quickly label all of the vertices belonging

to them. As of now, we provide box and plane segmentation tools. In the future we can expand

this to more complex geometry if the use case arises.

3 Tool Usage and Expansion By Developers

In this section we begin by introducing how a developer can obtain the labeling tool, and integrate

it with an existing web application codebase. We then explore how a developer launches a simple

instance of the tool application through browser JavaScript. After exploring a simple example, we

will proceed to explain how a developer can set up a unlabeled model source, and a labeled model

destination through a remote web server. Finally, we explore the various customization options

4

the developer has access to to fit the tool to their particular research needs, and give examples of

such setups.

3.1 Project Packaging and Build System

This section describes how the project is distributed and built on various platforms as a bundle of

raw non-compiled source files, and how the streaming build system, gulp, is configured to assemble

the minified source code for deployment.

3.1.1 Node Package Manager

Node JS, an open source JavaScript runtime for non-browser based JavaScript employs a package

manager called Node Package Manager (NPM). This is a convenient way to access a large reposi-

tory of JavaScript based projects and source code and easily declare dependencies in your project.

We utilize NPM for all our dependencies and libraries. To declare dependencies, you create a

packages.json file. Once created you can declare which libraries you would like to include in

your project.

From a developers prospective using our project, you simply have to run npm install in the

base directory of the labeling project. Once run, NPM will fetch the list of dependencies and

download the appropriate files such that our build system can find them.

3.1.2 Gulp Project Compilation

We use a streaming JavaScript build system called Gulp in our project compilation. This allows

us to provide multiple steps in the build process, and declare the process as a set of streaming op-

erations. For example, a TypeScript file can be streamed through multiple transformations before

being compiled by the TypeScript compiler, and ultimately combined and compressed as a last step.

From a developers prospective using our project, nothing special has to be done to install Gulp.

This is because Gulp also happens to be included in our NPM dependency list, so if NPM depen-

dencies are already fetched as described in the previous section, then the developer can proceed

to build. To build the project simply run the script npm run-script make in the base directory

of the labeling project.

Once the project is compiled, there will be a directory bin/client/static which is a fully

independent top level example of the labeler use. The bin/client/static/js folder contains

all the compiled JavaScript you need to use the labeling tool in your own client side projects. In

particular there is a main.js file which is the entire project compiled into one file. This is what you

include on pages using the labeler. There is also a folder bin/client/js/worker which contains

two separate JavaScript files which are launched as workers.

3.2 Instance Based Construction

This section describes the top-level API exposed to the developer and how the labeling tool is

constructed on a per-instance basis. Various construction options are also discussed.

5

3.2.1 Top Level Exposure

When the label tool file is included (bin/client/js/main.js) it will execute a very small piece

of bootstrap code which injects LabelerApp into the global name space (window). This allows the

developer to write their own script to access the labeling application constructor, and minimizes

name space pollution, since the entire application is enclosed in a JavaScript function closure.

3.2.2 Construction and Options

Once the main script file is included, you will have access to the LabelerApp object. You can

construct an instance of this object like so:

var app = new LabelerApp(document.body, {

MODEL_SOURCE : "data/lounge.ply",

MODEL_SAVE : "foo/"

});

The anatomy of this call is as follows: it creates an instance of LabelerApp which is the top

level object controlling the entire labeling application. The parameters are a target DOM element

and an options JSON object. The application will fill the target DOM element on the page with the

canvas application. In this example we are filling the document body element with the application

which creates a full screen application instance. The options JSON object contains various options

such as the endpoints for server integration as discussed in the next section. For a full list of

options look at src/client/Settings.ts in the non-compiled source directory.

3.3 Server Integration

A server communicates to the application in three possible ways. First, it usually necessary to

have the labeling application served via HTTP for the user’s browser to fetch it. This is optional

however, as the developer can run the application directly on the client machine without an in-

ternet connection. This would require the developer to keep all the JavaScript, CSS, HTML, and

other client side files directly on the client machine.

Secondly, the application will make GET requests to fetch the next model from a model loading

endpoint. It is the server’s job to keep state of the client making a request to this endpoint. This

can be done through browser cookies. The request requires the response to be an unlabeled PLY

binary file. The developer can write a simple server which responds with a single model, or create

a more complicated server. For example, the server could keep a simple counter for the client’s

request number, and use this as an index into a list of possible PLY models, effectively cycling

through the list.

Finally, the application will make POST requests to save labeled models to a model saving

endpoint. It, again, is the server’s job to implement any state logic between these requests (via

cookies for example). A simple example server can take the raw PLY binary in the POST request

and write it to storage with a time stamp and client identifier. This allows later utilizing the

collection of labeled PLY models in other post-processing steps.

6

4 Implementation Details

In this section we discuss the various implementation details of the labeling tool. We begin by

exploring the Model-View-Controller (MVC) pattern that is fundamental to the application main-

tainability and functionality. We proceed to discuss the various new web browser technologies that

we utilize including WebGL and WebWorkers. We then explore the rendering engine, ThreeJS, and

our interaction with it including Vertex Shaders, Fragmentation Shaders, PLY model rendering,

and the various rotation and translation systems that are the core of our input system.

We then discuss the application input system, and application modes. Following input discus-

sion, we describe our implementation of the User Interface (UI) system, and the various Document

Object Model (DOM) interactions that are part of it. At that point we progress into applica-

tion controls, and label tool implementation including the creation of a normal-sensitive expansion

algorithm, which is the basis for both the smart brush tool and surface flood filling tool.

4.1 Model-View-Controller (MVC)

Model-View-Controller (MVC) is a object oriented design pattern which is central to the label-

ing tool implementation. The application data including labeled and unlabeled models, tutorial

data, undo and redo systems, label information, and segmentation geometries are represented and

implemented as models in the application. Controllers act as central action routers, and contain

relationships with models. Controllers in the application include our central client controller, and

a user interface controller. Views contain any display information and necessary state that is re-

layed directly to the user interface views in the application. This includes pop up windows for

the tutorial system, the UI system, ThreeJS mesh and stage rendering components, and the DOM

interaction.

We employ a simple action and event system which utilizes controllers that define application

behavior. This allows the flexibility to integrate various application functionality in a decentralized

way such that each component only listens for actions, and does not strongly interact with other

major application components. In general, views and controllers fire events while controllers listen

for them.

4.2 Navigation and Control

During navigation mode we allow navigation in the labeling application such that the user can

label all surfaces of an unlabeled model. The implementation of navigation through the 3D en-

vironment is a traditional “trackball” implementation with rotation and panning. The rotation

implementation uses mouse drags across the XY camera projection plane to turn a virtual sphere

“trackball” through unit quaternion transforms. Panning is implemented by changing the center

of the virtual trackball. Using quaternion transforms as opposed to Euler angles allows us to avoid

Gimbel lock.

4.3 Tutorial System

Since the tool is largely more complex than a simple 2D labeling application, we made the decision

to implement a tutorial system that can be scripted to guide users through using the application,

or even through labeling an example. The tutorial system has two major subcomponents: A

communication system and a tutorial scripting system.

7

4.3.1 Communication System

To communicate the current stage of the tutorial, we enable two mediums. First, we allow high-

lighting any set of UI components in the tool. This flexible model allows us to name any number

of DOM UI component by ID, and will subsequently blink that component during that stage of

the tutorial. Secondly, we enable a simple pop up window system which creates a DOM element

with specified text. This element is styled such that is looks like a dialog box over the labeling

tool.

4.3.2 Tutorial Scripting System

As touched on by the Tool Usage and Expansion By Developers section, we created a sys-

tem for scripting tutorials. This allows developers to create additional tutorials and enable them

through construction options in their label tool instances. This system allows specification of tu-

torial stages, which are steps in the tutorial. During a stage, developers can specify which tools

are highlighted, and which actions will trigger the advance of the tutorial forward.

When a tutorial is run (usually on tool start up), we create a simple object which tracks the

current location in the tutorial. Additionally, we use HTML5 LocalStorage to track whether or

not a tutorial has been run. This allows flexibility in not showing the same tutorial twice.

4.4 Labeling Tools

For the labeling project we created a variety of tools to label 3D models. For each tool we create

a new button on the left side which when selected changes the application input mode. This

mode directs the input actions to their appropriate controller code that each tool implements. All

labeling tools operate with some variation of control based on ray tracing the 2D mouse location

to the geometry. Labels themselves are stored as simple JSON objects which describe their label

and indexing information for model save functionality. Each vertex then stores a pointer to this

JSON object while the labeling tool is running.

4.4.1 The Navigation Tool

The implementation of the navigation tool is simply an toggle switch of the full navigation and

control systems discussed in the Navigation and Control implementation section. Additionally,

we enable a quick “toggle” to navigation mode by holding the control key from any other input

mode. When the user initiates this event we simply fire the event as if the navigation button was

clicked.

4.4.2 The Pressure Brush Tool

The pressure brush tool behavior is based on the geometry of the model. As an entrance point,

we enable a paint brush input mode when the tool UI element is clicked. The pressure brush

employs surface normals and a dependency on time to create a pressure effect which favors similar

surfaces. During application start up and model load, one data structure we build over the loaded

model geometry is a graph of connected vertices. When a paint stroke is applied we obtain a set

of candidate vertices that are within our brush stroke radius. To do this, we begin a breadth first

search (BFS) of the graph of connected vertices from the paint source vertex limited by the current

brush size. This gives us a upper limit on the current paint brush size, and a set of vertices which

8

we can apply the painting algorithm to.

We then begin filling in vertices starting with the source with a label. This process starts with

assigning a cost to each vertex such that the cost is proportional to the dot product between the

source vertex normal and the normal of the candidate vertex:

C(Vc) = N(Vs) ·N(Vc)

Since vertex normals are vectors, this heuristic has the property that

C(Vc) ∼ 0

When the source and candidate vertex normals are near right angles, and

C(Vc) ∼ 1

When the source and candidate vertex normals are close to the same direction.

We also follow the property that an vertex can only be labeled if it is connected by a labeled

vertex in the graph, we initialize the source vertex to be labeled. As the user holds down the

paint stroke in place, we increase a value H(Vc) that is proportional to the time the user has spent

holding the paint stroke down. We then multiply this value times the C(Vc) for each vertex, such

that when this value passes a constant threshold T we label that candidate vertex if it is connected

by another labeled vertex:

H(Vc)C(Vc) ≥ T

Using this algorithm, the brush fills in surrounding flat surfaces with ease, but avoids painting

up sharp edges, and tends to label vertices within a desired area.

4.4.3 The Smart Fill Tool

The smart fill too employs the same algorithm discussed in the The Pressure Brush Tool section,

with one key difference: the brush size is unlimited, and our threshold value T is altered such that

flat surfaces are encouraged more. The result is that walls and other similar flat structures can be

flooded similar to a flood fill paint bucket tool found in many 2D image processing applications.

4.4.4 The Erase Tool

The erase tool removes the label from vertices in a defined brush size area. Logically, the brush

simply unsets the label from the vertices found in a brushed area. The tool follows a similar

algorithm as discussed in the The Pressure Brush Tool section. Since erasing felt like more

of a bulk operation, we opted for erasing the labels of the entire candidate area enclosed by the

initial BFS of the graph of connected vertices on the model. Therefore the tool is not restricted

to favoring flat surfaces.

9

4.4.5 Shape Segmentation Tools

An observation we made is that many shapes in our unlabeled data sets can be contained in simple

geometric primitives such as planes and boxes. Therefore, we developed a set of shape segmentation

tools which allow you to do exactly that: label a set of vertices contained in geometric primitives.

These primitives can be dragged and placed throughout the scene, when the user is satisfied with

their selection, they can double click to finalize the labeling. We developed two primitives: planes

and boxes. We included planes which align on any one of the X, Y, and Z axises, and label all

vertices on the opposing side of the geometry plane with respect to the camera location. This

allows easy labeling of large areas of flat surfaces. We also include box segmentation. This simply

produces an axis aligned box geometry which can be dragged to contain a set of vertices. Once

selected, all vertices within the geometry will be labeled with the current selected label.

4.5 Undo and Redo System

The undo and redo systems are accomplished with a stack-based approach. Controller actions that

can be undone are intercepted on the fly and added to the undo stack. A simple construction is

used to determine the inverse of an action that can be undone. The construction returns another

action which will revert the application to a state just before the action being undone was applied.

The system also allows batching. We simply enter a batch change surround grouped sub-

routine tasks, and when the logic returns from the sub routine we exit the batch change which

will then add the batch change to the stack. Batch changes are reverted by finding the inverse

change for each action in the batch as described above. Both batch and normal changes are en-

capsulated into a separate object which can be applied similar to the raw actions they encapsulate.

View logic is simply controlled by the state of the undo and redo stack. If either the undo

or redo stack contain changes we display the associated button. In the case that an action is

taken when there are changes in the redo stack, we simply empty the redo stack to preserve state

integrity in the application.

4.6 Layer Label System

Similar to many 2D processing applications, our labeling tools employed the notion of layers.

Layers cannot be created or destroyed and are directly tied with a one-to-one relationship to the

set of labels that the user can label vertices with. For example, if a “chair” label is available, there

will also exist a “chair” layer which contains all vertices that have been assigned the label “chair.”

4.6.1 Hiding and Showing Layers

Layers can be shown and hidden via the hide and show toggle button located next to the label

selector tool. Showing and hiding labels is done via Vertex and Fragmentation Shaders in OpenGL.

We assign a boolean vertex attribute which dictates whether or not that particular vertex is shown.

The shader utilizes these attributes to alter the appearance of particular vertices on the screen.

We then alter these attributes in batch to coincide with the state of layer visibility. For example,

when a layer is hidden, we traverse the set of vertices that have that layer’s label and apply a

hidden attribute to them.

10

Figure 3: Data flow and processing of the labeling application. Unlabeled model binaries are

fetched from the server endpoint specified in the constructor settings via HTTP GET request.

Once downloaded to the client, raw model binaries are parsed client side into appropriate data

structures via a web worker. After models are finished being labeled and are to be saved, a web

worker takes application data structures and outputs a labeled model binary. This binary is sent

to the server endpoint specified in the constructor via HTTP POST request.

4.7 Server Connection

The application was designed to operate almost entirely client side to make it portable and easy

to use for developers. We make connections with the server for two key operations, model loading

and model saving.

4.7.1 Model Loading

Model loading simply makes a HTTP GET request to the specified model loading URL. We inten-

tionally made this operation simple as it allows complex loading schemes to be implemented by a

server. For example, you can keep client state via HTTP Cookies on the server application and

for each subsequent model loading request send an arbitrary list of models to be labeled. You can

therefore hook this labeling application up to a private server which contains unlabeled models,

and continuously serve them to labeling clients. The response of the GET request must be a valid

PLY file. If no valid PLY file is specified, a client error will occur.

The PLY file is loaded and immediately dispatched to the load web worker which runs in a

separate thread to parse the raw binary buffer into various data structures used by the application.

The final data structured are likewise passed back as a message to the main thread. Loading the

model in this way allows the main UI thread to be uninterrupted during application load time.

4.7.2 Model Saving

Model saving is likewise simple and open ended for implementation. When a model is saved the

application will make a HTTP POST request to the developer specified model saving URL. The

payload of this request is a binary blob of the saved PLY file.

To form this binary, we first launch a instance of the save web worker which runs in a parallel

thread. The web worker receives the various data structures representing the labeled model in

the application. The web worker then constructs a final binary buffer representing the saved label

model. The final binary buffer is a PLY file that contains an extra label list appended to the end

11

in valid PLY binary format. Each vertex in the saved PLY file contains an extra byte which acts as

an index into the list of labels contained at the end of the PLY file. This representation minimizes

the extra space required by avoiding storing the entire label at each vertex.

4.8 Browser Technologies

We used multiple cutting edge browser technologies to enable a hardware accelerated smooth user

experience using our labeling tool. These browser technologies are widely supported in all major

latest browsers and platforms, which allows us to take advantage of the web platform for wide

distribution and adoption.

4.8.1 ThreeJS, WebGL, and Shaders

WebGL is a relatively new browser standard that enables hardware accelerated 3D graphics in

the web browser via OpenGL interfaces. We utilize WebGL as our primary rendering platform to

allow users to interact with the labeling tool. The current loaded model is shaded using Fragment

Shaders that are loaded as external files. The Fragment Shaders shade pixels with label colors and

simple dot product luminosity via a projection from the camera viewing angle. We also utilize

the fragment shader to hide pixels which are labeled with a currently hidden label. ThreeJS gives

multiple thin layers of abstractions for easy manipulation of the scene. ThreeJS also has the benefit

of providing access to the underlying WebGL and buffer representations of model geometry such

that we can build our own efficient data structures over the unlabeled models. Using ThreeJS

allows significantly more effort to be spent on application logic instead of the underlying rendering

engine.

4.8.2 Web Workers

One down side of modern JavaScript in performance critical applications is that it is single

threaded, and follows a event based concurrency model. When execution stacks are short lived,

this model behaves well; however, because user interface updates also share this central thread,

the user experience can suffer when execution stacks are long lived. Web Workers provide a simple

message based protocol for browser multi-threading. The process to create one is to specify a

target JavaScript file and communicate through a limited set of data types including buffers and

strings. Once a Web Worker is launched, it acts as an independently run JavaScript application

in the browser.

In our work, we integrate Web Workers by creating a set of worker TypeScript classes which

are independently compiled to separate minimized JavaScript files to be launched by the browser

Web Worker API. During development of this tool, we found a large slow down during PLY model

loading and saving since parsing and building the application data structures for complex 3D mod-

els proved to be a long operation. This led to the experience of a locked up browser while the

application initialized. To fix this problem, we opted to move all heavy data processing to HTML5

Web Workers.

During application load, a Web Worker is initialized to receive the downloaded raw model

buffer and parse it into the set of data structures our application understands. The result is that

users can interact with the page and see an animated loading screen, as opposed to their browser

locking up, and in some cases, crashing.

12

5 Future Work

For future work, we would like to test the tool with people of varying backgrounds to find the

average time spent for labeling scenes. In this way we can benchmark the effectiveness and sim-

plicity of the labeling tool. We would also like to run tests on the effectiveness of the annotations

and the noisiness of the labeled data with respect to the input model. In this way we can see how

well the tool performs with varying levels of quality in the input model.

With the explosion in 3D sensing capabilities, we expect a large amount of 3D data to become

available. A large body of work with this data is the ability to index it and utilize it for 3D de-

tection and recognition. There are many places that we can extend the labeling tool as well. One

such example is the ability to annotate objects with 3D characteristics, such as the ability to pivot

or rotate. This meta information can then, too, be utilized to to infer information about new scenes.

Another body of future work is curating of workers with a higher expertise level than those

found in the general audience (e.g. from general Mechanical Turk users). Labeling 3D geometry

in an accurate and useful fashion is not trivial. To alleviate this issue, labeling can also be semi-

automated to assist those marking areas of interest on the unlabeled model. For example, if we

are able to gather hints about the orientation of the model from the user, we could infer which

surfaces are floors and walls and automatically hide them. With larger amounts of data we can

employ machine learning techniques to partially label or point out areas of interest as well. The

goal here is to reduce the amount of work required of a participant labeling geometry. In this

way we can reduce the amount of tools and options available to annotators. We envision such

an operating mode for the regular computer user. This mode would require more detection and

software assistance, and may require more assumptions about the unlabeled model geometry.

6 Conclusion

Our work is a small part of a large effort in a new frontier of incredible 3D computer vision tech-

nology. We have created a tool to provide the ability to add semantic labels to an otherwise static

view of the virtual world. With emerging rendering and computational power in web browsers,

this tool targets the web platform utilizing a full 3D viewer to manipulate and label 3D scenes.

This tool and others like it are a stepping stone towards indexing and labeling large quantities of

3D geometry which is increasingly becoming available. We believe work such as this will enable

3D scenes that can be automatically labeled, allowing computers to understand the world in more

complex and useful ways.

7 Acknowledgments

I thank Steve Seitz and Richard Newcombe for providing guidance during this project’s develop-

ment, Ryan Drapeau for discussions and company while writing this paper.

8 References

[Biederman, 1987] Biederman, I. (1987). Recognition-by-components: a theory of human image understanding.

Psychological review, 94(2):115.

13

[Henry et al., 2012] Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). Rgb-d mapping: Using

kinect-style depth cameras for dense 3d modeling of indoor environments. The International Journal of Robotics

Research, 31(5):647–663.

[Howe, 2008] Howe, J. (2008). Crowdsourcing: How the power of the crowd is driving the future of business.

Random House.

[Hsueh et al., 2009] Hsueh, P.-Y., Melville, P., and Sindhwani, V. (2009). Data quality from crowdsourcing: a study

of annotation selection criteria. In Proceedings of the NAACL HLT 2009 workshop on active learning for natural

language processing, pages 27–35. Association for Computational Linguistics.

[Izadi et al., 2011] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,

Freeman, D., Davison, A., et al. (2011). Kinectfusion: real-time 3d reconstruction and interaction using a moving

depth camera. In Proceedings of the 24th annual ACM symposium on User interface software and technology,

pages 559–568. ACM.

[Kittur et al., 2008] Kittur, A., Chi, E. H., and Suh, B. (2008). Crowdsourcing user studies with mechanical turk.

In Proceedings of the SIGCHI conference on human factors in computing systems, pages 453–456. ACM.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.

[Russell et al., 2008] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme: a database

and web-based tool for image annotation. International journal of computer vision, 77(1):157–173.

[Vondrick et al., 2011] Vondrick, C., Patterson, D., and Ramanan, D. (2011). Efficiently scaling up crowdsourced

video annotation. International Journal of Computer Vision, pages 1–21. 10.1007/s11263-012-0564-1.

14

