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Chapter 1

ProcTHOR

1.1 Introduction

Computer vision and natural language processing models have become increasingly powerful through
the use of large-scale training data. Recent models such as CLIP [196], DALL-E [200], GPT-3 [16],
and Flamingo [3] use massive amounts of task agnostic data to pre-train large neural architectures that
perform remarkably well at downstream tasks, including in zero and few-shot settings. In comparison,
the Embodied Al (E-AI) research community predominantly trains agents in simulators with far fewer
scenes [198, 127, 50]. Due to the complexity of tasks and the need for long planning horizons, the best
performing E-AI models continue to overfit on the limited training scenes and thus generalize poorly to
unseen environments.

In recent years, E-Al simulators have become increasingly more powerful with support for physics,
manipulators, object states, deformable objects, fluids, and real-sim counterparts [127, 214, 223, 77, 266],
but scaling them up to tens of thousands of scenes has remained challenging. Existing E-AI environments
are either designed manually [127, 77] or obtained via 3D scans of real structures [214, 198]. The
former approach requires 3D artists to spend a significant amount of time designing 3D assets, arranging
them in sensible configurations within large spaces, and carefully configuring the right textures and
lighting in these environments. The latter involves moving specialized cameras through many real-world
environments and then stitching the resulting images together to form 3D reconstructions of the scenes.
These approaches are not scalable, and expanding existing scene repositories multiple orders of magnitude
is not practical.

We present PROCTHOR, a framework built off of AI2-THOR [127], to procedurally generate fully-
interactive, physics-enabled environments for E-Al research. Given a room specification (e.g., a house
with 3 bedrooms, 3 baths, and 1 kitchen), PROCTHOR can produce a large and diverse set of floorplans
that meet these requirements (Fig. 1.1). A large asset library of 108 object types and 1633 fully interactable
instances is used to automatically populate each floorplan, ensuring that object placements are physically
plausible, natural, and realistic. One can also vary the intensity and color of lighting elements (both
artificial lighting and simulated skyboxes) in each scene, to simulate variations in indoor lighting and the
time of the day. Assets (such as furniture and fruit) and larger structures such as walls and doors can be
assigned a variety of colors and textures, sampled from sets of plausible colors and materials for each
asset category. Together, the diversity of layouts, assets, placements, and lighting leads to an arbitrarily
large set of environments — allowing PROCTHOR to scale orders of magnitude beyond the number
of scenes currently supported by present-day simulators. In addition, PROCTHOR supports dynamic
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CHAPTER 1. PROCTHOR 6

Figure 1.1: We propose PROCTHOR, a framework to procedurally generate a large variety of diverse,
interactable, and customizable houses.

material randomizations, whereby colors and materials of individual assets can be randomized each time
an environment is loaded into memory for training. Importantly, in contrast to environments produced
using 3D scans, scenes produced by PROCTHOR contain objects that both support a variety of different
object states (e.g. open, closed, broken, efc.) and are fully interactive so that they can be physically
manipulated by agents with robotic arms. We also present ARCHITECTHOR, a 3D artist-designed set
of 10 high quality fully interactable houses, meant to be used as a test-only environment for research
within household environments. In contrast to AI2-iTHOR (single rooms) and RoboTHOR (lesser visual
diversity) environments, ARCHITECTHOR contains larger, diverse, and realistic houses.

We demonstrate the ease and effectiveness of PROCTHOR by sampling an environment of 10,000 houses
(named PROCTHOR-10K), composed of diverse layouts ranging from small 1-room houses to larger 10-
room houses. We train agents with very simple neural architectures (CNN+RNN) — without a depth sensor,
and instead only employing RGB channels, with no explicit mapping and no human task supervision —
on PROCTHOR-10K and produce state-of-the-art (S0TA) models on several navigation and interaction
benchmarks. As of 10am PT on June 14th, 2022 we obtain (1) RoboTHOR ObjectNav Challenge [7]
— 0-shot performance superior to the previous SoTA which uses RoboTHOR training scenes — with
fine-tuning we obtain an 8.8 point improvement in SPL over the previous SoTA; (2) Habitat ObjectNav
Challenge 2022 [159] — top of the leaderboard results with a >3 point gain in SPL over the next best
submission; (3) 1-phase Rearrangement Challenge 2022 [6] — top of the leaderboard results with Prop
Fixed Strict improving from 0.19 to 0.245; (4) AI2-iTHOR ObjectNav — 0-shot numbers which already
outperform a previous model that trains on AI2-iTHOR, with fine-tuning we achieve a success rate of
77.5%; (5) ArmPointNav [60] — 0-shot number that beats previous SoTA results when using RGB; and
(6) ArchitecTHOR ObjectNav — a large success rate improvement from 18.5% to 31.4%. Finally, an
ablation analysis clearly shows the advantages of scaling up from 10 to 100 to 1K and finally to 10K
scenes and indicates that further improvements can be obtained by invoking PROCTHOR to produce even
larger environments.

In summary, our contributions are (1) PROCTHOR, a framework that allows for the performant pro-
cedural generation of an unbounded number of diverse, fully-interactive, simulated environments, (2)
ARCHITECTHOR, a new, 3D artist-designed set of houses for E-AI evaluation, and (3) SoTA results
across six E-AI benchmarks covering manipulation and navigation tasks, including strong 0-shot results.
PROCTHOR will be open-sourced and the code used in this work will be released.

1.2 Related Work

Embodied AI platforms. Various Embodied Al platforms have been developed over the past several
years [127, 214, 223, 266, 77, 261]. These platforms target different design goals. AI2-THOR [127]
and its variants (ManipulaTHOR [60] and RoboTHOR [50]) are built in the Unity game engine and
focus on agent-object interactions, object state changes, and accurate physics simulation. Unlike AI2-
THOR, Habitat [214] provides scenes constructed from 3D scans of houses, however, objects and scenes
are not interactable. A more recent version, Habitat 2.0 [233], introduces object interactions at the
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expense of being limited to one floorplan and synthetic scenes. iGibson [223] includes photo-realistic
scenes, but with limited interactions such as pushing. iGibson 2.0 [137] extends iGibson by focusing
on household tasks and object state changes in synthetic scenes and includes a virtual reality interface.
ThreeDWorld [77] targets high-fidelity physics simulation such as liquid and deformable object simulation.
VirtualHome [192] is designed for simulating human activities via programs. RLBench [105], Robo-
Suite [284] and Sapien [266] target fine-grained manipulation. The main advantage of PROCTHOR is
that we can generate a diverse set of interactive scenes procedurally, enabling studies of data augmentation
and large-scale training in the context of Embodied Al

Large-scale datasets. Large-scale datasets have resulted in major breakthroughs in different domains such
as image classification [53, 134], vision and language [25, 239], 3D understanding [21, 267], autonomous
driving [17, 229], and robotic object manipulation [188, 167]. However, there are not many interactive
large-scale datasets for Embodied Al research. PROCTHOR includes interactive houses generated
procedurally. Hence, there are an arbitrarily large number of scenes in the framework. The closest works
to ours are [198, 186, 141]. HM3D [198] is a recent framework that includes 1,000 scenes generated
using 3D scans of real environments. PROCTHOR has a number of key distinctions: (1) unlike HM3D
which includes static scenes, the scenes in PROCTHOR are interactive i.e., objects can move and change
state, the lighting and texture of objects can change, and a physics engine determines the future states
of the scenes; (2) it is challenging to scale up HM3D as it requires scanning a house and cleaning up
the data, while we can procedurally generate more houses; (3) HM3D can be used only for navigation
tasks (as there is no physics simulation and object interaction), while PROCTHOR can be used for tasks
other than navigation. OpenRooms [141] is similar to HM3D in terms of the source of the data (3D scans)
and dataset size. However, OpenRooms is interactive. OpenRooms is also confined to the set of scanned
houses, and it takes a significant amount of time to annotate a new scene (e.g., labeling materials for
one object takes 1 minute), while PROCTHOR does not suffer from these issues. Megaverse [186] is
another large-scale Embodied Al platform that includes procedurally generated environments. Although
it is impressive in terms of simulation speed, it includes only game-like environments with a simplified
appearance. In contrast, PROCTHOR mimics real-world houses in terms of the complexity of appearance,
physics, and object interactions.

Scene synthesis. Work on scene synthesis is typically broken down into generating floorplans [146, 153,
96, 260] and sampling object placement in rooms [68, 83, 276, 279, 30]. Our work aimed to generate
diverse and semantically plausible houses using the best existing approaches or building on existing
works in areas that were insufficient for our use case. Our floorplan generation process is adapted
from [146, 153], which takes in a high-level specification of the rooms in a house and their connectivity
constraints, and randomly generates floorplans satisfying these constraints. Our object placement is
most similar to [279, 83, 276, 270, 24], where we iteratively place objects on floors, walls, and surfaces
and use semantic asset groups to sample objects that co-occur (e.g. chairs next to tables). The modular
generation process used in this work makes it easy to swap in and update any stage of our house generation
pipeline with a better algorithm. In this work, we found the procedural generation approaches to be
more reliable and flexible than the ones based on deep learning when adapting it to our custom object
database and when generating more complex houses that were out of the distribution of static house
datasets [71, 260, 142]. For a more detailed comparison, including a discussion of some of the limitations
of deep learning approaches, please refer to the Appendix.

1.3 PROCTHOR

PROCTHOR is a framework to procedurally generate E- Al environments. It extends AI2-THOR and,
thereby, inherits AI2-THOR’s large asset library, robotic agents, and accurate physics simulation. Just
as in scenes painstakingly created by designers in AI2-THOR, environments in PROCTHOR are fully
interactive and support navigation, object manipulation, and multi-agent interaction.
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Fig. 1.2 shows a high-level schematic of the procedure used by PROCTHOR to generate a scene. Given a
room specification (e.g. house with 1 bedroom + 1 bathroom), we use multi-stage conditional sampling
to, iteratively, generate a floor plan, create an external wall structure, sample lighting, and doors, then
sample assets including large, small and wall objects, pick colors and textures, and determine appropriate
placements for assets within the scene. We refer the reader to the appendix for details regarding our
procedural generation and sampling mechanism, but highlight five key characteristics of PROCTHOR:
Diversity, Interactivity, Customizability, Scale, and Efficiency.

Sample Interior Create Structure Sample Doors Sample Large Objects Sample Surface Objects

Bathroom

Sample Room Spec Sample Floor Plan Add Lights Sample Structure Materials ~ Sample Wall Objects

Living Room

Figure 1.2: Procedurally generating a house using PROCTHOR.

Diversity. PROCTHOR enables the creation of rich and diverse environments. Mirroring the success of
pre-training models with diverse data in the vision and NLP domains, we demonstrate the utility of this
diversity on several E- Al tasks. Scenes in PROCTHOR exhibit diversity across several facets:

ezhad [
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Figure 1.3: Floorplan diversity. Examples showing the diversity of the generated floorplans. Rooms in
the house are colored by M Bedroom, " Bathroom, M Kitchen, and " Living Room.

Diversity of floor plans. Given a room specification, we first employ iterative boundary cutting to obtain an
external scene layout (that can range from a simple rectangle to a complex polygon). The recursive layout
generation algorithm by Lopes et al. [146] is then used to divide the scene into the desired rooms. Finally,
we determine connectivity between rooms using a set of user-defined constraints. These procedures result
in natural room layouts (e.g., bedrooms are often connected to adjoining bathrooms via a door, bathrooms
more often have a single entrance, etc). As exemplified in Fig. 1.3, PROCTHOR generates hugely diverse
floor plans using this procedure.
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Figure 1.4: Object diversity. A subset of instances for four object categories.

Diversity of assets. PROCTHOR populates scenes with small and large assets from its database of 1633
household assets across 108 categories (examples in Fig. 1.4). While many assets are inherited from
AI2-THOR, we also introduce new assets such as windows, doors, and countertops, hand-designed by
3D graphic designers. Asset instances are split into train/val/test subsets and are interactable, i.e. objects
can be picked and placed within the scenes, some objects have multiple states (e.g. a light can be on or
off) and several objects consists of parts with rigid body motions (e.g. door on a microwave).

Figure 1.5: Material augmentation. Different materials for objects and structural elements.

Diversity of materials. Walls can have two kinds of materials — one of 40 solid (and popular) colors or
one of 122 wall textures such as brick and tile. We also provide 55 floor materials. The ceiling material
for the entire house is sampled from the set of wall materials. PROCTHOR also provides the ability to
randomize materials of objects. Materials are only randomized within categories, which ensures objects
still look and behave like the class they represent.

Figure 1.6: Object placement. Four examples of object placement within the same room layout.

Diversity of object placements. Asset categories have several soft annotations that help place them
realistically within a house. These include room assignments (e.g. couch in a living room but not a
bathroom) and location assignments (e.g. fridge along a wall, TV not on the floor). We also develop the
notion of a Semantic Asset Group (SAG) — groups of assets that typically co-occur (e.g. dining table with
four chairs) and thus must be sampled and placed using dependent sampling. Given a layout, individual
assets and SAGs that lie on the floor are sampled and placed iteratively, ensuring that rooms continue
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to have adequate floor space for agents to navigate and manipulate objects. Then wall objects such as
windows and paintings get placed, and finally, surface objects (ones found on top of other assets) are
placed (e.g. cups on the kitchen counter). This sampling allows for a large and diverse set of object
choices and placements within any layout. Fig. 1.6 shows such variations.

Figure 1.7: Lighting variation. Morning, dusk, and night lighting for an example scene.

Diversity of lighting. PROCTHOR supports a single directional light (analogous to the sun) and several
point lights (analogous to lightbulbs). Varying the color, intensity, and placement of these sources allows
us to simulate different artificial lighting, typically observed in houses, and also at different times of the
day. Lighting has a significant effect on the rendered images as seen in Fig. 1.7.

Figure 1.8: Interactivity. Object states can change (e.g., the laptop or the lamp in the left panel), and the
agents can interact with objects and other agents (middle and right panels).

Interactivity. A key property of PROCTHOR is the ability to interact with objects to change their location
or state (Fig. 1.8). This capability is fundamental to many Embodied Al tasks. Datasets like HM3D [198]
that are created from static 3D scans do not possess this capability. PROCTHOR supports agents with
arms capable of manipulating objects and interacting with each other.

Figure 1.9: Customizability. PROCTHOR can be used to construct custom scene types such as class-
rooms, libraries, and offices.

Customizability. PROCTHOR supports many room, asset, material, and lighting specifications. With a
few simple lines of specification, one can easily generate customized environments of interest. Fig. 1.9
shows examples of such varied scenes (classroom, library, and office).
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Scale and Efficiency. PROCTHOR currently uses 16 different scene specifications to seed the scene
generation process. These can result in over 100 billion layouts. PROCTHOR uses 18 different Semantic
Asset groups and 1633 assets. These can result in roughly 20 million unique asset groups. Each of these
assets can be placed in numerous locations. In addition, each house gets scaled and uses a variety of
lighting. This diversity of layouts, assets, materials, placements, and lighting enables the generation
of arbitrarily large sets of houses — either statically generated and stored as a dataset or dynamically
generated at each iteration of training. Scenes are efficiently represented in a JSON specification and are
loaded into AI2-THOR at runtime, making the memory overhead of storing houses incredibly efficient.
Scene generation is fully automatic and fast and PROCTHOR provides high framerates for training E-AI
models (see Sec. 1.4 for details).

1.4 PROCTHOR-10K

We demonstrate the power and potential of PROCTHOR using a sampled set of 10,000 fully interac-
tive houses obtained by the procedural generation process described in Section 1.3 — which we label
PROCTHOR-10K. An additional set of 1,000 validation and 1,000 testing houses are available for eval-
uation. Asset splits across train/val/test are detailed in the Appendix. All houses are fully navigable,
allowing an agent to traverse through each room without any interaction. In terms of scale, PROCTHOR-
10K is one of the largest sets of interactive home environments for Embodied Al — as a comparison,
AI2-iTHOR [127] includes 120 scenes, RoboTHOR [50] has 89 scenes, iGibson [223] has 15 scenes,
Habitat Matterport 3D [198] has 1,000 static (non-interactive) scenes, and Habitat 2.0 [233] has 105 scene
layouts. Scaling beyond 10K houses is straightforward and inexpensive. This set of 10K houses was
generated in 1 hour on a local workstation with 4 NVIDIA RTX A5000 GPUs. Fig. 1.11 shows examples
of ego-centric and top-down views of houses present in PROCTHOR-10K.

Scene statistics. Houses in PROCTHOR-10K are generated using 16 different room specifications. An
example room spec is: A house with 1 bedroom connected to 1 bathroom, 1 kitchen, and 1 living room

Distribution of Number of Objects in Rooms le-2 House Area Distribution Distribution of Houses by Number of Rooms

[ 1-3 Room Houses

I
8,000 14 [ 4-6 Room Houses 2,000
1.2 “ \ [1 7-10 Room Houses
6, 210 | \ 1,500
i) \
508 [
y Sos | | 1,000
| T\
2,000 I 04| | \ A . 500
02 | N/ N I
o .-_ 00 1 A - 0 I nll
: 8 9

0 10 20 30 40 50 0 100 200 300 400 500 600 1 2 3 4 5 6 7
Number of Objects in Room Area of House (m?) Number of Rooms
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Figure 1.10: PROCTHOR-10K statistics. Left: distribution of the number of objects in each room;
Middle: distribution of the area of each house, bucketed into small, medium, and large houses; Right: bar
plot showing the distribution over the number of rooms that make up each house.

Figure 1.11: Example scenes in PROCTHOR-10K with top-down and an egocentric view.
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Navigation FPS Isolated Interaction FPS Environment Query FPS
Compute Small Large Small Large Small Large
8 GPUs 8,5994359  3,208+127 6,488+250  2,861+107 480,205+19,684  433,587418,729
1 GPU 1,427+74  6,280+40 1,265+71 597437 160,622+2,846  157,56742,689
1 Process 240469 115419 180442 93415 14,825+199 14,916+186

Table 1.1: Rendering speed. Benchmarking FPS for navigation (e.g. moving/rotating), interaction (e.g.
pushing an object), and querying the environment for data (e.g. checking the dimensions of the agent).
We report FPS for Small and Large houses. See Appendix for details.

and is visualized in Fig. 1.2. Houses in this dataset have as few as 1 room and as many as 10. Fig. 1.10
shows the distribution of areas (middle) and the number of rooms (right) of these generated houses. Our
use of room specifications enables us to change the distribution of the size and complexity of houses
fairly easily. PROCTHOR-10K encompasses a wider spectrum of scenes than AI2-iTHOR [127] and
ROBOTHOR [50] (biased towards room-sized scenes) and Gibson [264] and HM3D [198] (biased towards
large houses).

Rooms in each of these houses contain objects from 95 different categories including common household
objects such as fridges, countertops, beds, toilets, and house plants, and structure objects such as doorways
and windows. Fig. 1.10 (left) shows the distribution of the number of objects per room per house, which
shows that houses in PROCTHOR-10K are well populated. They also contain objects sampled via 18
different Semantic Asset groups. Examples of Semantic asset groups (SAG) are a Dining Table with
4 Chairs or Bed with 2 Pillows. Given our large asset library and SAGs, we can create 19.3 million
combinations of group instantiations.

Rendering speed. A crucial requirement for large-scale training is high rendering speed since the training
algorithms require millions of iterations to converge. Table 1.1 shows these statistics. Experiments
were run on a server with 8§ NVIDIA Quadro RTX 8000 GPUs. For the 1 GPU experiments, we use 15
processes and for the 8 GPU experiments, we use 120 processes, evenly distributed across the GPUs.
PROCTHOR provides framerates comparable to iTHOR and RoboTHOR environments in spite of having
larger houses (See Appendix for details), rendering it fast enough for training large models for hundreds
of millions of steps in a reasonable amount of time.

1.5 ArchitecTHOR

Figure 1.12: Top-down images of ARCHITECTHOR validation houses.

In order to test if models trained on ProcTHOR can generalize to real-world floorplans and object
placements, a test set of houses was needed. Neither iTHOR (single room scenes) nor RoboTHOR (dorm-
sized maze-styled scenes) contain scenes that are representative of real-world homes. Therefore, we
worked with professional 3D artists to create ArchitecTHOR, which contains 10 evaluation houses (5 val,
5 test) that mimick the style of real-world homes. ArchitecTHOR val houses contain between 4-8 rooms,
121 + 26 objects per house, and a typical floor size of 111 4= 26 m?2. By comparison, PROCTHOR-10K
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houses have a much higher variance, with between 1-10 rooms, 76 4 48 objects per house, and a typical
floor size of 96 & 74 m?2.

1.6 Experiments

Tasks. We now present results for models pre-trained on PROCTHOR-10K on several navigation and
manipulation benchmarks to demonstrate the benefits of large-scale training. We consider ObjectNav
(navigation towards a specific object category) in PROCTHOR, ARCHITECTHOR, RoboTHOR [50],
HM3D [198], and AI2-iTHOR [127]. We also consider two manipulation-based tasks: ArmPointNav [60]
and 1-phase Room Rearrangement [249]. In ArmPointNav, the agent moves an object using a robotic
arm from a source location to a destination location specified in the 3D coordinate frame. In Room
Rearrangement, the goal is to move objects or change their state to reach a target scene state.

Models. Our models for all tasks consist of a CNN to encode visual information and a GRU to capture
temporal information. We deliberately use a simple architecture across all tasks to show the benefits
of large-scale training. Our ObjectNav and Rearrangement models use the CLIP-based architectures of
[117]. Our ArmPointNav model uses a simpler visual encoder with 3 convolutional layers; we found this
more effective than the CLIP encoder. All models are trained with the AllenAct [251] framework, see the
Appendix for training details.

Results. We present results in two settings: zero-shot and after fine-tuning on the training scenes provided
by the downstream benchmark. Zero-shot experiments show us how well models trained on PROCTHOR
generalize to new environments, whereas fine-tuning experiments tell us if representations learned from
PROCTHOR can serve as a good initialization for quick tuning. For all experiments, we use only RGB
images (no depth and other modalities is used).

Zero-shot is particularly challenging since other environments have different appearance statistics, layouts,
and object distributions compared to PROCTHOR. ARCHITECTHOR and AI2-iTHOR [127] are high-
fidelity artist-designed scenes with high-quality shadows and lighting. HM3D is constructed from 3D
scans of houses which can differ quite a bit from synthetic environments. RoboTHOR [50] houses use
wall panels and floors with very specific textures.

Zero-shot transfer results. Models trained only on PROCTHOR and evaluated 0-shot outperform previous
SoTA models on 3 benchmarks (see Table 1.2). These strong results suggest that models generalize to not
only unseen objects and scenes, but also new appearance and layout statistics.

Fine-tuning results. Further fine-tuning of the model using each benchmark’s training data, achieves
state-of-the-art results on all benchmarks (refer to fine-tune rows of Table 1.2). Notably, our model
is ranked first on three public leaderboards as of 10am PT, June 14th 2022: Habitat 2022 ObjectNav
challenge, AI2-THOR Rearrangement 2022 challenge, and RoboTHOR ObjectNav challenge. It should
be noted that our model achieves these results using a very simple architecture and only RGB images.
Other techniques typically use more complex architectures that include mapping or visual odometry
modules and use additional perception sensors such as depth images.

Scale ablation. To evaluate the effect of scale we train the models on 10, 100, 1k, and 10k houses. Here,
we do not use any material augmentations. As shown in Table 1.3, the performance improves as we use
more houses for training, demonstrating the benefits of large-scale data for E-AlI tasks.

1.7 Conclusion

We propose PROCTHOR to procedurally generate arbitrarily large sets of interactive, physics-enabled
houses for Embodied Al research. We pre-train simple models on 10k generated houses and show SOTA
results across 6 embodied tasks with strong 0-shot results.
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Task Benchmark Method Metrics
Success SPL
ObjectNav RoboTHOR Challenge EmbCLIP [117]¢ 47.0% 0.200
ProcTHOR 0-shot 55.0% 0.237
ProcTHOR + fine-tune 65.2% 0.288
Success SPL
MLNLC® 52.0% 0.280
Habitat Challenge FusionNav (AIRI)¢ 54.0% 0.270
ObjectNav (2022) ProcTHOR 0-shot 9.00% 0.055
HM3D-Semantics ProcTHOR + fine-tune 53.0% 0.270
ProcTHOR + Large? + 0-shot 13.2% 0.077
ProcTHOR + Large? + fine-tune ~ 54.4% 0.318
Success SPL
ObjectNav AI2-iTHOR EmbCLIP [117]° 68.4% 0.516
ProcTHOR 0-shot 75.7% 0.644
ProcTHOR + fine-tune 77.5% 0.621
Success SPL
ObjectNav ARCHITECTHOR EmbCLIP [117]° 18.5% 0.118
ProcTHOR 31.4% 0.195
Success % Fixed Strict
Rearrangement ~ AI2-THOR Challenge =~ EmbCLIP [117] 7.10% 0.190
1-phase (2022) ProcTHOR 0-shot 3.80% 0.156
ProcTHOR + fine-tune 7.40% 0.245
Success % PickUp SR
ArmPointNav ManipulaTHOR iTHOR-SimpleConv [60]¢ 29.2% 73.4
ProcTHOR 0-shot 37.9% 74.8

Table 1.2: Results for models trained on ProcTHOR and evaluated 0-shot and with fine-tuning on several
E-AI benchmarks. For each benchmark we also compare to the relevant baselines (previous SoTA or
leaderboard submissions where applicable). “EmbCLIP [117] trained on ROBOTHOR, "EmbCLIP [117]
trained on AI2-iTHOR, “submission on the Habitat 2022 ObjectNav leaderboard [159]. 4 For HM3D we
present results when pretraining using the EmbCLIP architecture (which uses CLIP-pretrained ResNet50)
as well as with a “Large” model which uses a larger CLIP backbone CNN as well as a wider RNN, see
supplement for details. “uses the model from [60] but retrains on the complete iTHOR data with RGB
inputs. 0-shot results, whereby models are pre-trained on PROCTHOR-10K and do not use any
training data from the benchmark that they are evaluated on.

ARCHITECTHOR ROBOTHOR HM3D AI2-iTHOR

Test Test (0-Shot) Valid (0-Shot) Test (0-Shot)

# HOUSES  SPL SR SPL SR SPL SR SPL SR
10 Houses  0.077 11.3% 0.040 8.53% 0.007 1.60% 0.249 28.7%
100 Houses  0.102 18.6% 0.076 209% 0.050 104% 0352 42.0%
1,000 Houses  0.122 17.2% 0.157  33.1% 0.027 4.65% 0.456 53.0%
10,000 Houses  0.185 27.0% 0.210 44.5% 0.060 9.70% 0.554 64.9%

Table 1.3: Ablation study to evaluate the effect of the number of training houses. Each model is trained to
80% success during training. Test performance increases with the number of training houses.



Chapter 2

Objaverse

2.1 Abstract

Massive data corpora like WebText, Wikipedia, Conceptual Captions, WeblmageText, and LAION have
propelled recent dramatic progress in Al. Large neural models trained on such datasets produce impressive
results and top many of today’s benchmarks. A notable omisslion within this family of large-scale
datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of
high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing
this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with
descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms
of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate
the large potential of Objaverse via four diverse applications: training generative 3D models, improving
tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models
for Embodied Al and creating a new benchmark for robustness analysis of vision models. Objaverse can
open new directions for research and enable new applications across the field of Al

2.2 Introduction

Massive datasets have enabled and driven rapid progress in Al. Language corpora on the web led to
large language models like GPT-3 [15]; paired image and text datasets like Conceptual Captions [222]
led to vision-and-language pretrained models like ViIBERT [147]; YouTube video datasets led to video
capable models like Merlot-Reserve [277]; and massive multimodal datasets like WeblmageText [227]
and LAION [217, 216] led to models like CLIP [195] and StableDiffusion [207]. These leaps in dataset
scale and diversity were triggered by moving from manually curated datasets to harnessing the power of
the web and its creative content.

In contrast to the datasets described above, the size of the datasets we are feeding to our data-hungry deep
learning models in many other areas of research is simply not comparable. For instance, the number of
3D assets used in training generative 3D models is, maximally, on the order of thousands [80] and the
simulators used to train embodied Al models typically have only between a few dozen to a thousand
unique scenes [125, 233, 202, 136]. The startling advances brought about by developing large-scale
datasets for images, videos, and natural language, demand that an equivalent dataset be built for 3D assets.

15
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Figure 2.1: Example instances from our large-scale 3D asset dataset OBJAVERSE. OBJAVERSE 3D assets
are semantically diverse, high-quality, and paired with natural-language descriptions.

We present OBJAVERSE 1.0, a large scale corpus of high-quality, richly annotated, 3D objects; see Fig. 2.1.
Objects in our dataset are free to use' and sourced from Sketchfab, a leading online platform for managing,
viewing, and distributing 3D models. In total, OBJAVERSE contains over 800K 3D assets designed by
over 150K artists which makes this data large and diversely sourced. Assets not only belong to varied
categories like animals, humans, and vehicles, but also include interiors and exteriors of large spaces
that can be used, e.g., to train embodied agents. OBJAVERSE is a universe of rich 3D data with detailed
metadata that can support many different annotations to enable new applications. With this remarkable
increase in scale, we see an incredible opportunity for OBJAVERSE to impact research progress across
domains. In this work, we provide promising results to answer three questions.

Can 3D vision benefit from a large-scale dataset? First, as a 3D asset resource, OBJAVERSE can
support the exciting field of 3D generative modeling. We use data extracted from OBJAVERSE to train
generative models for single and multiple categories using GET3D [80] and find that we are able to
generate high-quality objects. Moreover, we find that our generated objects are found by human annotators
to be more diverse than those generated by a model trained on ShapeNet objects in 91% of cases.

Can the diversity of 3D models help improve classical 2D vision task performance? To answer
this question, we use the diversity of OBJAVERSE to improve the performance of long tail instance
segmentation models. Instance segmentation data can be expensive to obtain owing to the cost of
annotating contours around objects. The recent LVIS dataset contains segmentation annotations for
1,230 categories but the task remains very challenging for present day models, particularly on tail
categories that have few examples. We show that increasing the volume of data by leveraging a simple
Copy+Paste augmentation method with OBJAVERSE assets can improve the performance of state-of-the-
art segmentation methods.

!Creative Commons license
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Dataset # Objects  # Classes
YCB [18] 77 5
BigBIRD [225] 125 -
KIT [116] 219 145
IKEA [143] 219 11
Pix3D [230] 395 9
GSO [56] 1K 17
EGAD [166] 2K -
PhotoShape [180] 5K 1
ABO [42] 8K 63
3D-Future [72] 10K 34
ShapeNet [22] 51K 55
Objaverse 818K 21K

Figure 2.2: Comparison between OBJAVERSE and existing 3D object datasets. (Left:) Visual compar-
ison of instances from OBJAVERSE and ShapeNet for the categories of CAR, BED, VASE, and BAG.
OBJAVERSE instances are substantially more diverse since objects can come from many 3D content
creation platforms, whereas ShapeNet models look more similar and all come from SketchUp, a 3D
modeling platform built for simple architectural modeling. (Right:) Scale comparison table between
existing 3D object datasets.

We also use OBJAVERSE to build a benchmark for evaluating the robustness of state-of-the-art visual
classification models to perspective shifts. We render objects in OBJAVERSE from random orientations,
which is how one might expect to see them in the real world, and test the ability of CLIP-style visual
backbones to correctly classify these images. Our experiments show that current state-of-the-art models’
performance degrades dramatically in this setting when viewing objects from arbitrary views. OBJAVERSE
allows us to build benchmarks to test (and potentially train) for orientation robustness for a long tail
distribution of asset categories. Building such benchmarks is made uniquely possible by the scale and
diversity of 3D assets in OBJAVERSE. This would simply not be feasible to create in the real world nor
can they be generated from existing 2D images.

Can a large-scale 3D dataset help us train performant embodied agents?  We use assets in
OBJAVERSE to populate procedurally generated simulated environments in ProcTHOR [52] that are
used to train Embodied Al agents. This results in an orders of magnitude increase in the number of unique
assets available for use in ProcTHOR scenes (previously limited to AI2-THOR’s [125] asset library of
a few thousand unique instances each assigned to one of 108 object categories). Using OBJAVERSE
populated scenes enables open vocabulary object navigation from any text description. In this paper, we
provide quantitative results for navigating to 1.1K semantic object categories, roughly a 50x increase.

These findings represent just a small fraction of what can be accomplished using OBJAVERSE. We are
excited to see how the research community will leverage OBJAVERSE to enable fast and exciting progress
in 2D and 3D computer vision applications and beyond.

2.3 Related Work

Large scale datasets. Scaling the size and scope of training datasets has widely been demonstrated
to be an effective avenue of improvement for model performance. In computer vision, the adoption of
early large scale datasets such as Imagenet[210, 54] and MS-COCO[145] has dramatically accelerated
progress on a variety of tasks including classification, object detection, captioning, and more. Ever
since, the diversity and scale of datasets have continued to grow. YFCC100M is a dataset of 99.2M
images and 800K videos[238]. Openlmages[133] is a large scale dataset of 9M images that contains
labeled subsets bounding boxes, visual relationships, segmentation masks, localized narratives, and
categorical annotations. Massive web-scraped datasets containing image-text pairs such as Conceptual
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Captions[222], WIT[227], and LAION[217, 216] have seen increased popularity recently as they have
been used to train impressive models for vision-language representation learning[195, 98, 106], text-to-
image generation[201, 199, 207, 106], and vision-language multitasking[38, 234, 247, 36].

3D datasets. Current large-scale 2D image datasets offer three crucial components that benefit learning:
scale, diversity, and realism. Ideally, models that reason about 3D objects should have access to datasets
that meet these same criteria. However, of the numerous 3D object datasets that currently exist, none
are able to excel in all three categories to the same degree as their 2D counterparts. Datasets such
as KIT[116], YCB[18], BigBIRD[225], IKEA[143], and Pix3D[230] provide image-calibrated models
over a diverse set of household objects, but severely lack in scale with only a few hundred objects at
most. EGAD[166] procedurally generates 2K objects for grasping, but produces objects that are not that
realistic or diverse. Slightly larger datasets of photo-realistic objects include GSO[56], PhotoShape[180],
ABO[42] and 3D-Future[72], and ShapeNet[22] with object counts in the tens of thousands, see Fig. 2.2 for
comparisons between OBJAVERSE and these datasets. Datasets for CAD models, such as ModelNet[262]
and DeepCAD[259], and ABC[122] do not include textures or materials, which limits their ability to
represent objects that could plausibly be found in the real world. Datasets of scanned 3D objects and
environments are valuable for real-world understanding[45, 46, 40, 135], but are quite small and limited.
In addition to containing numerous artist designed objects, OBJAVERSE contains many scanned assets,
making it a useful source of data for learning from real-world distributions.

While rapid progress has been made in developing datasets that combine image and text, in contrast,
only a few datasets that pair language and 3D data exist. Text2Shape[35] released a dataset of 15,038
chairs and tables from ShapeNet each with around 5 text captions, giving 75,344 total text-shape pairs.
ShapeGlot[ 1] released the CiC (Chairs in Context) dataset which contains 4,511 chairs from ShapeNet
along with 78,789 descriptive utterances generated from a referential game. Due to the small scale and
limited diversity of these datasets, current SOTA text-to-3D models[160, 189, 100] forgo the use of 3D
datasets entirely and instead rely on 2D image-text supervision.

2.4 Objaverse

OBJAVERSE is a massive annotated 3D dataset that can be used to enable research in a wide range of
areas across computer vision. The objects are sourced from Sketchfab, an online 3D marketplace where
users can upload and share models for both free and commercial use. Objects selected for OBJAVERSE
have a distributable Creative Commons license and were obtained using Sketchfab’s public API. Aside
from licensing consideration, models marked as restricted due to objectionable or adult thematic content
were excluded from the dataset.

Model metadata. OBJAVERSE objects inherit a set of foundational annotations supplied by their creator
when uploaded to Sketchfab. Figure 2.4 shows an example of the metadata available for each model. The
metadata includes a name, assignments to a set of fixed categories, a set of unrestricted tags, and a natural
language description.

OBJAVERSE-LVIS. While OBJAVERSE metadata contains a great deal of information about objects,
Sketchfab’s existing categorization scheme covers only 18 categories, too coarse for most applications.
Object names, categories, and tags provide multiple potential categorizations at varying levels of specificity
and with some inherent noise. However, for many existing computer vision tasks, it is useful to assign
objects to a single category drawn from a predetermined set of the right size and level of semantic
granularity.

We choose the categories from the LVIS dataset [87] for categorizing a long-tail subset of objects in
OBJAVERSE. We construct a 47K LVIS categorized object subset, called OBJAVERSE-LVIS, comprised
of objects uniquely assigned to one of 1156 LVIS categories. We perform these assignments by first
selecting 500 candidate objects per category using a combination of predictions from a CLIP classification
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Figure 2.3: OBJAVERSE statistics. (a) All 18 high-level categories present in OBJAVERSE’s metadata
with their corresponding number of occurrences. The relative share of most popular categories are
evenly split, with a small number of less frequently categories. (b) A sample of several thousand
popular object tags found in OBJAVERSE log-scaled by their frequency. (c) A histogram of fine-grained
OBJAVERSE-LVIS categories with representative members from several bins highlighted. (d) A histogram
of OBJAVERSE tags with representative members from several bins highlighted (note y-axis log scale).
Tags from the low-occurrence side of the distribution correspond to unique objects that, taken individually,
are rarely seen in the world. Frequently used tags like "furniture" and "car" reflect their real-world
normalcy, but the high frequency of assets like "sword" diverge from their real-world counterparts.

model and candidates suggested by terms in their metadata. This combined pool contains objects visually
resembling the target category (from the CLIP features of their thumbnail images) that might have missing
metadata, as well as visually unusual instances of a category that are accurately named or tagged. These
250k candidate objects were then manually filtered and their assigned categories verified by crowdworkers.
Since we only presented 500 object candidates per class, many popular categories, such as chair or car,
have substantially more objects that could be included in OBJAVERSE-LVIS with future annotations.

Animated objects and rigged characters. OBJAVERSE includes 44K animated objects and over 63K
objects self-categorized as characters. Examples of animations include fridge doors opening, animals
running, and the hands on a clock moving. Rigged characters can be set up for animation and rendering,
and may often come annotated with bone mappings. The vast scale of animations available in OBJAVERSE
can support a wide range of research in temporal 3D learning, such as building text-based animation
generative models [237], representing object changes over time with NERFs [193, 181], and temporal
self-supervised learning via. future frame prediction [277, 99].

Articulated objects. Decomposing 3D objects into parts has led to a flurry of research in the past few
years, including work in learning robotic grasping policies [271, 266], 3D semantic segmentation [164],
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Figure 2.4: An example of metadata available for each object in OBJAVERSE. Each uploaded object has a
3D model, user-selected rendered thumbnail image, name, description, tags, category, and stats, among
additional metadata.

and shape generation [163]. Since many objects in OBJAVERSE were uploaded by artists, the objects
often come separated into parts. Figure 2.5 shows an example, where a chair is separated by its backrest,
wheels, and legs, among many smaller parts.

Exteriors. Photogrammetry and NERF advances have enabled the commercialization of capturing high-
quality 3D objects of large exteriors by taking pictures [236, 268]. In OBJAVERSE, there are a large
number of scanned buildings, cities, and stadiums. Figure 2.5 shows an example of a 3D object of NYC’s
skyline captured through a scan.

OBJAVERSE-Interiors. There are 16K+ interior scenes in OBJAVERSE, including houses, classrooms,
and offices. The scenes often have multiple floors, many types of rooms, and are densely populated with
objects from human input. Objects in the scenes are separable into parts, which allows them to be usable
for interactive robotics, embodied Al, and scene synthesis. To put the scale of OBJAVERSE-Interiors
in perspective, the number of scenes in OBJAVERSE-Interiors is significantly larger than the 400 or so
existing hand-built interactive embodied Al scenes [125, 76, 136, 233].

Visual styles. Objects in the world can be constructed in many styles and often differ in style based on the
time-period, geographic location, and artist’s style. OBJAVERSE objects cover a vast set of visual styles,
including 3D scans, 3D modeled objects from virtually any platform, point clouds, and photo-realism
via physically based rendering (PBR) [187]. Moreover, instances of objects often appear with many
styles, which is critical for training and evaluating robust computer vision models [195]. Figure 2.5 shows
examples of chairs in OBJAVERSE in many different styles, including Gothic, modern, Victorian, cartoon,
and abstract.

Figure 2.5: Highlights of the visual diversity of objects that appear in OBJAVERSE, including animated
objects, rigged (body-part annotated) characters, models separatable into parts, exterior environments,
interior environments, and a wide range visual styles.
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(b) Shoe and Fruit& Veg. generations.

(a) Comparison of Bags generated with OBJAVERSE and
ShapeNet.

(c) Fruit&Veg. interpolation.

Figure 2.6: (a) Example GET3D Bag object generations using OBJAVERSE and ShapeNet models for
training. (b) Additional Shoe and Fruit& Veg generations from OBJAVERSE models. (c) models generated
when interpolating between two, randomly sampled, latent encodings with our trained Fruit& Veg. model;
what appears to be a pumpkin smoothly transforms into a mushroom.

Statistics. OBJAVERSE 1.0 includes 818K 3D objects, designed by 160K artists. There are >2.35M tags
on the objects, with >170K of them being unique. We estimate that the objects have coverage for nearly
21K WordNet entities [162] (see appendix for details). Objects were uploaded between 2012 and 2022,
with over 200K objects uploaded uploaded just in 2021. Figure 2.3 visualizes several statistics of the
dataset, including the breakdown of objects into their self-assigned Sketchfab categories, a word cloud
over the tags, a frequency plot of the tags, and the number of objects in OBJAVERSE-LVIS categories.

2.5 Applications

In this section, we present 4 initial distinct applications of OBJAVERSE, including 3D generative modeling,
instance segmentation with CP3D, open-vocabulary ObjectNav, and analyze robustness in computer
vision models.

2.5.1 3D Generative Modeling

3D generative modeling has shown much improvement recently with models such as GET3D [80]
delivering impressive high quality results with rich geometric details. GET3D is trained to generate 3D
textured meshes for a category and produces impressive 3D objects for categories like Car, Chair, and
Motorcycle using data from ShapeNet [22]. OBJAVERSE contains 3D models for many diverse categories
including tail categories which are not represented in other datasets. It also contains diverse and realistic
object instances per category. This scale and diversity can be used to train large vocabulary and high
quality 3D generative models. In this work, we showcase the potential of this data as follows. We choose
three categories of objects, Shoe, Bag, and Fruit& Veg, and subsample objects from OBJAVERSE to create
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Figure 2.7: An illustration of CP3D (copy-paste 3D) for segmentation augmentation. We render 3D
objects from multiple views and paste them over LVIS training images.

three separate datasets containing, respectively, 143 shoes, 816 bags, and 571 fruits & vegetables (116
apples, 112 gourds, 92 mushrooms, 68 bananas, 52 oranges, 52 pears, 31 potatoes 24 lemons, and 24
pineapples). For comparison, we also train a GET3D model on the set of 83 bags from the ShapeNet
dataset. Fig. 2.6 shows a collection of 3D objects generated by our trained GET3D models. Qualitatively,
the 3D-meshes generated by the OBJAVERSE-trained models are high-quality and diverse, especially when
compared to the generations from the ShapeNet-trained model. To quantify this observation, we asked
crowdworkers to rate the diversity of Bag generations produced by the OBJAVERSE and ShapeNet trained
models. When shown collections of nine randomly sampled generations from both models, workers rated
the collection generated from the OBJAVERSE trained model as more diverse in appearance 91% of the
time.

Our fruits and vegetables, composed of 9 varieties produces perhaps the highest quality output, a promising
signal that can inspire future work in text-to-3D generation.

2.5.2 Instance Segmentation with CP3D

A key advantage of using simulated data for computer vision is that it is much cheaper to obtain expert
annotations. Annotated OBJAVERSE objects can be rendered into images, allowing them to serve as a rich
source of additional data that can be used to enhance model performance on 2D computer vision tasks.
As a proof-of-concept demonstrating the effectiveness of this approach, we use segmented data from
OBJAVERSE objects as auxiliary labels for training models on the LVIS dataset for Large Scale Instance
Segmentation [87]. The LVIS dataset contains instance segmentation masks for 1200 object categories
that occur throughout a set of 164k images. Recognition is especially challenging in this task due to the
long tail of the object category distribution in this dataset. LVIS categories only contain an average 9
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Figure 2.8: An existing ProcTHOR scene (left) and a semantically similar ProcTHOR generatable scene
with OBJAVERSE objects (right).

instances across the dataset, so training on simulated data is a promising approach for overcoming the
challenges of learning in this low-sample regime.

Using the LVIS-annotated subset of OBJAVERSE, we introduce CP3D: an enhancement to the simple, but
effective, copy-and-paste technique of[84]. Figure 2.7 shows an example of the setup for CP3D. Here, we
render different views of 3D objects and paste them on-top of existing LVIS images. We render 5 distinct
views of each object and cache them for use throughout training. During training, an image is selected
for the copy-paste augmentation with 0.5 probability, and once selected, 1-3 images of randomly chosen
LVIS-annotated OBJAVERSE objects are pasted onto the selected training image. The segmentation masks
of the selected objects are added to the training image’s annotation as well. Object images and masks
are randomly scaled and translated before being pasted. We use this strategy to finetune the pretrained
ResNet-50 Mask-RCNN [91, 92] of [5]. As shown in Tab.B. 1, simply finetuning this model for 24 epochs
yields performance gains across several metrics.

2.5.3 Open-Vocabulary ObjectNav

In this section, we introduce open-vocabulary ObjectNav, a new task propelled by the vast diversity of
objects that appear in OBJAVERSE. Here, an agent is placed at a random starting location inside of a home
and tasked to navigate to a target object provided from a text description (e.g. “Raspberry Pi Pico”). To
facilitate this task, we procedurally generate 10K new homes in ProcTHOR [52] fully populated with
objects from OBJAVERSE-LVIS. Until now, ObjectNav tasks have focused on training agents to navigate
to 20 or so target objects provided their category label [48, 202, 52], and existing interactive embodied
Al simulations, including ProcTHOR, only include around 2K total objects across around 100 object
types [136, 52, 233]. In this work, we take a large step to massively scale the number of target objects
used in ObjectNav (20 — OpenVocab), the number of objects available in simulation (2K — 36K), and
the number of object types of the objects (100 — 1.1K).

Method AP  APr APc APf
RFS [87] 237 133 23.0 290
EQLv2 [235] 255 177 243 302
LOCE [66] 26.6 185 262 307
NorCal with RES [178] 252 193 242 29.0
Seesaw [244] 264 195 26.1 29.7
GOL [5] 277 214 277 304
GOL + CP3D 283 218 283 311

Table 2.1: Comparison of our approach (GOL+CP3D) against SOTA Mask-RCNN ResNet-50 models on
LVIS. We report results for APr, APc, and APf which measure AP for categories that are rare (appear in
1-10 images), common (appear in 11-100 images), and frequent (appear in >100 images), respectively
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Object placement. To make the placement of objects in the houses more natural, we use the
OBJAVERSE-LVIS subset and annotate placement constraints for each object category. Specifically,
we annotate if objects of a given category typically appears on the floor, on-top of a surface, or on a wall.
If instances of the object category may appear on the floor, we also annotate whether it may appear in the
middle of the scene (e.g. a clutter object like a basketball) or on the edge of the scene (e.g. a toilet or a
fridge). For objects placed on the floor, we also to automatically detect flat regions on top of the object’s
mesh to place surface object types. The annotations are used by ProcTHOR for sampling objects to place
in a scene. We also filter out OBJAVERSE-LVIS objects that do not appear inside of homes, such as a jet
plane. Structural objects, like doors and windows, are inherited from ProcTHOR as they would require
additional cleanup.

Object size correction. Objects in Sketchfab may be uploaded at unnatural scales (e.g. a plant being
as large as a tower). We therefore scale the objects to be of a reasonable size for them to look natural
in a house. Here, for each object category, we annotate the maximum bounding box dimension length
that every instance of the object category should be scaled to. For example, we annotate the maximum
bounding box dimension for bookcase to be 2 meters and fork to be 0.18 meters. If a 3D modeled bookcase
then has a bounding box of 20mx6m x 3m, we shrink each side by a factor of max(20, 6, 3)/2 = 5.

Preprocessing for AI2-THOR. We add support to AI2-THOR for loading objects on the fly at runtime.
Previously, all objects had to be stored in a Unity build, but such an approach is impractical when working
with orders of magnitude more object data. For each object, we compress it with Blender [44] by joining
all of its meshes together, decimate the joined mesh such that it has at most 5K vertices, and bake all the
UV texture maps into a single texture map. We then generate colliders using V-HACD [152] to support
rigid-body interactions.

Approach. Given procedural houses populated with OBJAVERSE-LVIS, the task is to navigate to the
proximity of a chosen target object and invoke a task-completion action when the target object is in sight,
given an open-vocabulary description formed with the template “a {name} {category}". The name is
the object name given by its creator, which is often descriptive. We filter each by whether it is detected as
being written in English by a language detector [109, 108], and fall back to a class-only description for
non-English name. Examples of the possible expressions include “a victorian-monobike motorcycle",
“a unicorn pony", or “a dino ghost lizard". The agent, similar to the ones in [118], observes an RGB
egocentric view of the environment, pre-processed by the visual branch of a frozen ResNet-50 CLIP
model [195] — the target description is pre-processed by the corresponding text branch. We train the agent
with DD-PPO [255] and evaluate on houses with floor plans, objects, and descriptions unseen in training.
We use the AllenAct [252] framework to train our agent. Our trained agent achieves a success rate of
19.9%, for a random policy success of 5.1%. For more details about the experiment refer to the appendix.

2.5.4 Analyzing Robustness

A persistent bias present in many image datasets, e.g. ImageNet [210], is that the subjects of interest
are generally photographed from a forward-facing, canonical, orientation. When, for example, taking a
photograph of a television, few would choose to take this photograph crouched on the floor behind the
television. This impact of this bias was studied by Alcorn ef al. [4] who find that modern computer vision
systems are highly susceptible to deviations from canonical poses. This is more than a theoretical problem:
computer vision systems deployed in the real world will frequently encounter objects in non-canonical
orientations and in many applications, e.g. autonomous driving, it will be safety critical that they behave
well.

Given the above, we adopt the experimental design of Alcorn et al. and design, using OBJAVERSE assets,
a benchmark for evaluating the robustness of state-of-the-art computer vision classification models to
orientation shifts. In particular, for each object in our OBJAVERSE-LVIS subset, we render 12 images of
the object from random orientations rendered upon a background with RGB values equalling the mean
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Figure 2.9: Examples of objects rendered from random orientations and their 0-shot classification
categories with the CLIP ViT-B/32.

Random Rotation Any Rotation

Model | Top-1  Top-5 | Top-1  Top-5 | ATop-1
OpenAI-400M [195]

RN50 214%  45.0% | 43.9%  70.8% 22.5%
ViT-L/14 291%  545% | 523% 77.2% 23.2%
LAION-400M [217]

ViT-B/32 241%  48.5% | 46.9%  74.2% 22.8%
ViT-L/14 30.6%  56.8% | 50.5% 77.0% 19.9%
LAION-2B [216]

ViT-B/32 27.0% 51.8% | 503% 76.1% 23.3%
ViT-L/14 329% 592% | 52.1% 78.0% 19.2%
ViT-H/14 323% 58.8% | 50.1%  77.3% 17.8%

Table 2.2: Evaluating 0-shot CLIP classification models on our rotational robustness benchmark. ATop-1
denotes the difference between Top-1 Any Rotation and Top-1 Random Rotation. Models are strongly
overfit to standard views of objects.

RGB values from ImageNet; see Fig. 2.9 for examples. This ability to, at scale, render objects from
random viewpoints is a practical impossibility in the real world but is made trivial when using 3D assets.
We then evaluate several modern open-domain image-classification networks (constrained to the ~1,200
LVIS categories) on these images and report 4 metrics for each model. These metrics include:

e Top-1 Random Rotation — the frequency with which a model correctly classifies an image as belonging
to the respective LVIS category.
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e Top-1 Any Rotation — the frequency with which a model classifies an image correctly from at least one
of the 12 random orientations.

This second metric is diagnostic and serves to represent a model’s performance when shown an object
from a canonical pose. We also have Top-5 variants of the above metric where the correct category need
only be in the top 5 predictions from the model. We report our results in Tab. 2.2 in which we evaluate a
variety of performant pretrained models. Comparing the gap in performance between the Top-k Random
Rotation and Top-k Any Rotation metrics we find that model performance dramatically degrades when
viewing objects from unusual orientations.

2.6 Conclusion

We present OBJAVERSE, a next-generation 3D asset library containing 818K high-quality, diverse, 3D
models with paired text descriptions, titles, and tags. As a small glimpse of the potential uses of
OBJAVERSE, we present four experimental studies showing how OBJAVERSE can be used to power
(1) generative 3D models with clear future applications to text-to-3D generation, (2) improvements to
classical computer vision tasks such as instance segmentation, (3) the creation of novel embodied Al
tasks like Open Vocabulary Object Navigation, and (4) quantifying the rotational robustness of vision
models on renderings of objects. We hope to see OBJAVERSE enable a new universe of new applications
for computer vision.



Chapter 3

Phone2Proc

3.1 Abstract

Training embodied agents in simulation has become mainstream for the embodied AI community. How-
ever, these agents often struggle when deployed in the physical world due to their inability to generalize
to real-world environments. In this paper, we present Phone2Proc, a method that uses a 10-minute
phone scan and conditional procedural generation to create a distribution of training scenes that are
semantically similar to the target environment. The generated scenes are conditioned on the wall layout
and arrangement of large objects from the scan, while also sampling lighting, clutter, surface textures, and
instances of smaller objects with randomized placement and materials. Leveraging just a simple RGB
camera, training with Phone2Proc shows massive improvements from 34.7% to 70.7% success rate in
sim-to-real ObjectNav performance across a test suite of over 200 trials in diverse real-world environments,
including homes, offices, and RoboTHOR. Furthermore, Phone2Proc’s diverse distribution of generated
scenes makes agents remarkably robust to changes in the real world, such as human movement, object
rearrangement, lighting changes, or clutter.

3.2 Introduction

The embodied Al research community has increasingly relied on visual simulators [126, 215, 265] to
train embodied agents, with the expectation that the resulting policies can be transferred onto robots in the
physical world. While agents trained within simulated environments have shown increased capabilities,
progress in successfully deploying these policies onto physical robots has been limited.

Robots trained in simulation must overcome daunting challenges if they are to work effectively in a real
space such as our home. First, they must overcome the generalization gap between the limited set of
simulated environments they are trained on and the test scene of interest. In practice, policies trained
to perform complex visual tasks with reinforcement learning struggle to perform well in novel scenes
with novel layouts and object instances. Second, they must work in realistic environments where we live
and work, which are often full of clutter, with objects that keep being moved around, with people in and
out of the scene and with lighting changes. In short, we expect our agents to learn from a small set of
training data points and generalize not just to a single test data point, but to a distribution of test data that
is often semantically distant from the training data. Today’s methods are a ways away from delivering
such performant, robust, and resilient robots [49, 31].

27
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Figure 3.1: Successfully deploying agents trained in simulation to the real world has generally proved
fraught - we present PHONE2PROC, a simple approach that uses a cellphone to scan an environment and
procedurally generate targeted training scene variations of that location, whose usage results in successful
and robust agents in the real environment.

In this work, we present PHONE2PROC, which represents a significant advancement towards the goal of
creating performant, robust, and resilient robots. Instead of training policies in simulated environments
that may be semantically distant from the target physical scene, PHONE2PROC efficiently generates
a distribution of training environments that are semantically similar to the target environment. This
significantly reduces the generalization gap between the training and target distributions, resulting in more
capable robots.

PHONE2PROC utilizes a freely available mobile application to quickly scan a target environment and create
a template of the surroundings, including the scene layout and 3D placements of large furniture. This
template is then used to conditionally generate a fully interactive simulated world using ProcTHOR [52],
closely mirroring the real-world space. Importantly, this single simulated environment is then transformed
into a distribution of simulated worlds by randomizing objects, their placements, materials, textures, scene
lighting, and clutter. This allows for the creation of arbitrary large training datasets that are semantically
similar to the desired real-world scene.

We produce policies for object goal navigation using PHONE2PROC and deploy them onto a LoCoBot
robot in the physical world. We conduct extensive evaluations with 234 episodes in five diverse physical
environments: a 3-room and 6-room apartment, a test scene from RoboTHOR-real, a conference room,
and a cafeteria. This represents one of the largest and most diverse studies of sim-to-real indoor navigation
agents to date. Across all environments, PHONE2PROC significantly outperforms the state-of-the-art
embodied Al model built with ProcTHOR, with an average improvement in success rate from 34.7% to
70.7%. Our robot is able to explore the scene efficiently and effectively navigate to objects of interest,
even in the presence of clutter, lighting changes, shifts in furniture, and human movement. These strong
navigation results are achieved using an RGB-only camera, no depth sensors, no localization sensors,
and no explicit mapping components.

In summary, we present: (1) PHONE2PROC, a simple and highly effective method for reducing the
generalization gap between datasets of simulated environments and a target environment in the real world,
(2) large-scale real-world robotics experiments with 234 trials showing significant improvements for
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Figure 3.2: Examples of environment templates for our five target test environments. These are
produced by an iPhone scanning each environment using our iOS app that leverages Apple’s RoomPlan
APIL. These environment templates contain the room layouts and some 3D locations for large furniture
objects. They do not contain small objects, textures, lighting, etc.

PHONE2PROC compared to state-of-the-art models, and (3) experiments demonstrating the robustness of
PHONE2PROC in the face of variations such as changes in lighting, clutter, and human presence.

3.3 Related Work

Navigation in Simulated Environments. Visual navigation [12, 8] is a popular task in the embodied
Al community with benchmarks in several simulators [126, 265, 215, 198]. An effective approach is to
use semantic mapping to explore environments efficiently [26, 27, 28, 82]. Kumar et al. [132] adapts
mapping methods to condition the policy on the target. These works utilize agent pose and depth sensors
to build their maps and localize the agent. In contrast, our method only relies on RGB information without
any additional sensor. Other methods for navigation use scene priors [274], meta-learning [256], paired
grid world environments [101], scene memory transformers [64], passive videos of roaming in a scene as
a training cue [90] and expert human trajectories for imitation learning [203].

The community has also made progress in training embodied agents for navigation exclusively using RGB
observations and barebones neural architectures. These include using frozen ImageNet trained visual
encoders [283], learning visual encoders from scratch [49], and using CLIP [138] based encoders [118].
Gadre et al. [75] and [151] use an off-the-shelf exploration method and clip-based object localization to
accomplish 0-shot object navigation. Deitke et al. [52] show the benefits of procedural generation for
navigation and manipulation.

While the above works show promising results in simulation, most are not deployed and tested on real
robots. We provide comparisons to the current state-of-the-art method, ProcTHOR [52], via large-scale
real-world evaluations.

Sim-to-Real Transfer. While most models are evaluated only in simulation, for practical applications,
policies learned in simulation must function in real life. Often, policies trained only in simulation can
prove brittle or nonfunctional in transfer [104]. Chatopadhyay et al. [31] find that standard embodied
agents significantly underperform (or fail) in the presence of realistic noise in the system. Truong et al.
[242] compare the correlation of the performance of 4-legged robots navigating in simulation against the
real world. They find that adding fidelity to the simulation does not help with the performance in the real
world.

An alternate approach to higher fidelity is to add randomization to sensing or dynamics in simulation. This
does help [240, 211], but too much randomization can degrade training efficacy [155], and hand-tuning
appropriate randomization requires expert knowledge and does not scale. Some address this pitfall by
leveraging real-world rollouts or inputs at train time to tune simulation randomization [57, 32]. However,
these works are randomizing a subset of a well-parameterized dynamical system for a narrow task (swing-
peg-in-hole or cabinet opening), as opposed to a more open-ended task or randomizing the entire visual
appearance and object instances of the environment.
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Recent works have deployed and measured policies on real robots [110, 14, 212, 58, 241] for the task
of point goal navigation. In contrast to most, we use no mapping, explicit localization, or depth, as well
as targeting a more complex task. We also test more extensively and in a wider variety of environments.
Anderson et al. [9] study the sim-to-real gap for vision and language navigation and discover a crucial
need for an oracle occupancy map and navigation graph. Our method does not require a manually
annotated map and is robust to moving obstacles without the necessity for an additional dataset.

Real-to-Sim Transfer. Transferring observations from the real world to simulation can open up further
capacities for training agents. This has been studied in the domain of object manipulation [144, 246].
[63] replicate an observed manipulation trajectory by predicting contact points and the forces. [107, 175]
generate a 3D mesh of an object with articulation from observed interactions. [231, 10] infer simulation
parameters for deformable object manipulation. [273, 243] learn cloth material recovery from videos.
Our focus is on conditioning our procedural generation on the real scene rather than perfectly replicating
the observation. [190] use a self-supervised technique to utilize unlabeled images for acquiring data for
training scene graph models. We focus on generating 3D interactable environments for training embodied
agents.

Navigation in Robotics. The robotics community has made progress in navigating robots with different
embodiments in a diverse set of environments. Gupta et al. [89] combine a differentiable planner module
with mapping to train a visual navigation agent end-to-end. In contrast to our work, their method assumes
perfect odometry. Different methods have been used to build agents that follow demonstrated paths and
trajectories or navigate [94, 131, 157, 156, 269, 213]. Shah et al. [221, 220] build models for open world
navigation. The main focus of these works is on the low-level control systems of the robots, whereas our
focus is on building end-to-end models for embodied visual reasoning.

3.4 Approach

We now present PHONE2PROC which generates a distribution of training environments that closely match
the real world physical space we are interested in. We begin with a phone scan of a target scene (Sec 3.4.1),
then condition on this scan to procedurally generate variations of the scene for training agents (Sec 3.4.2),
and finally transfer onto a LoCobot robot that navigates in the physical world (Sec 3.4.3).

3.4.1 Scanning

PHONE2PROC is designed to optimize a robot’s performance within a desired real world environment.
The first step in this process is to scan the target environment. This is accomplished using an iOS app that
we built and will release using Apple’s freely available RoomPlan API [47]. Scanning a large apartment
with several rooms only takes a few minutes, can be done using an iPhone or iPad and it outputs the
environment template as a USDZ file.

The RoomPlan API provides us with a high-level bounding box template of the environment, which
contains the room layouts and 3D placement of large objects that are visible to the camera. While scanning
an environment, the app provides detailed real-time feedback about the construction of the scene to help
the user capture a more accurate scan.

The resulting environment template includes the 3D locations and poses of walls, large objects, windows,
and doors. Each object in the scan is assigned to one of 16 object types, including storage, sofa, table,
chair, bed, refrigerator, oven, stove, dishwasher, washer or dryer, fireplace, sink, bathtub, toilet, stairs, and
TV. Smaller objects, such as those typically on surfaces, are ignored. The metadata produced for each
object includes the size, position, and rotation of its 3D bounding box, along with the forward-facing
orientation. Doors and windows are provided as cutouts in the walls. Figure 3.2 presents examples of
scanned environments showcasing the diversity of the layouts in our test set.
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Figure 3.3: Examples of Procedurally Generated Houses. The procedural generation of the houses is
conditioned on the target environment scanned using a phone. We are able to sample a rich and diverse
set of scenes from this distribution with varying lighting, textures, objects and placements.

3.4.2 Environment-Conditioned Procedural
Generation

Procedural generation of simulation environments allows for a vast diversity of scenes for agents to train
on. Deitke et al. [52] begin with a high-level room specification (e.g. 2 bedroom house with a kitchen
and living area) and create an environment that matches it. In contrast, our approach uses a scan of the
target real-world environment to condition the generation and create variations of that scene. This process
involves (a) parsing the environment template, (b) generating the scene layout, (c) sampling objects from
the asset library to match scanned semantic categories, (d) accounting for object collisions in Unity, (e)
populating the scene with small objects not captured by the scan, and (f) assigning materials and lighting
elements.

PHONE2PROC parses the USDZ environment template produced by the iOS app and extracts wall, door
and window positions and 3D large object bounding boxes. It then leverages ProcTHOR to generate a
fully rendered scene in Unity and finally populates this scene using ProcTHOR’s asset database of 1,633
assets across 108 object types. The generation process is very fast and can generate 1000 procedural scene
variants in around an hour with an 8 Quadro RTX 8000 GPU machine. We now provide further details on
each of these steps.

Layout. The environment specification file contains the placement of walls in each room. Unlike walls
generated in ProcTHOR-10K [49], which are only aligned to orthogonal axes, PHONE2PROC allows for a
more diverse wall generation that can accommodate any scanned layout. Each wall’s specification comes
from its 3D bounding box, width, height and a constant depth (e.g. 16cm for all walls) — which are used
to produce a wall asset within the simulated environment. Placing walls produces the external boundary
of the environment as well as its internal layout.

Rooms. We partition the space located within the external boundary walls into distinct rooms. A room is
formed if the walls formed from the top-down 2D plane fully enclose a polygon. This is followed by floor
and ceiling generation.

Windows and doors. The environment template specifies if each wall has cutouts for windows and doors.
Our USDZ parser extracts the size and position of the holes along the wall. If the hole includes a cutout at
the bottom of the floor, we place a door there; otherwise, we place a window. Here, we uniformly sample
a door or window asset from the asset database and scale it appropriately.
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For doors between connecting rooms, the sampled door may either include just a frame or both a frame
with an openable door and a degree of openness sampled uniformly between 0.8 and 1.0. The room that
the door opens into is randomly sampled. If the door is connected to the outside of the environment, we
sample a door frame with an openable door component and fully close the door (to prevent agents from
getting out of the scene).

Semantic objects. For each object in the template, we wish to sample an appropriate asset matching
its semantic category. For each semantically similar ProcTHOR object candidate, we compute its 3D
bounding box IoU with the object it may represent in the environment template and reject candidates
with an IoU less than 75%. We then uniformly sample from the rest. The sampled asset’s position on the
floor and its forward-facing direction come from the environment template’s corresponding object. We
compute the vertical position of the object based on if it is on a surface (e.g. a couch on the floor or a
television on top of a table) or attached to a wall (e.g. a wall television).

This procedure to find a matching asset can sometimes lead to large variations. For example, a table
object may match a ProcTHOR coffee table, side table, or dining table and a TV may match a flat-screen
TV or a vintage box television. Randomly sampling different asset instances in the library of a particular
semantic object type makes agents more robust as they must learn to generalize to many visually distinct
instances for each type.

Object collisions. We check to make sure that none of the placed objects collide with one another or the
walls in the scene to avoid unrealistic configurations.

Small objects. After placing the large objects that match the scan, we generate smaller objects to be
placed on top of them. Here, for instance, we might populate a bed with pillows or place fruits and plates
on the counter. Unlike what happens in a 3D reconstruction, where all the objects are static, we are able
to randomize the placement of small and target objects to produce many scene variations and prevent
overfitting (See experiments in Sec ??).

Lighting. Scene lighting is randomized such that each room is guaranteed one light, and then additional
lights are uniformly sampled throughout the scene scaled to the number of rooms. Each light is then
randomized in its intensity, RGB values, shadow bias, and strength.

Materials. We randomize materials following ProcTHOR’s material randomization by sampling from
sets of structure materials (i.e. wall, floor, and ceiling) and object materials.

Clutter. After all the semantic objects from the scan have been sampled and smaller objects have
been sampled to be placed on top of them, we also sample additional clutter objects (such as boxes,
dumbbells, pillows, and plants) that are placed on the floor of each room — similar to how a real house
may have objects like kids toys thrown around. These objects prevent overfitting to particular paths in the
environment and helps teach agents to avoid obstacles.

3.4.3 Transfer to Real World

We first detail our model architecture and training regime then discuss our robot and physical scenes.

Model and Training Details. Our goals are to: a) design models that do not depend on unrealistic sensory
data in real indoor environments like agent or target localization, b) use only RGB observations since real
world depth cameras offer few choices, generally come with small FOV and are fairly noisy, and c) create
agents that are robust to clutter and changes in the environment.

PHONE2PROC provides a distribution of simulated worlds that are sampled to produce a large training set.
These scenes differ in the placement of small objects, materials, lighting, clutter, etc. This allows us to
train policies that do not overfit to a single scene configuration, but instead generalize to realistic scene
variations.
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Figure 3.4: Our architecture is a simple GRU operating on the CLIP encoding of solely RGB input.

In terms of the model design, we adopt a simple architecture introduced in [118] and also used in [52].
The model uses a CLIP encoder to embed the visual observation (ego-centric RGB frame) followed by a
GRU to capture temporal information (Fig 3.4). We pre-train our model on the ProcTHOR-10k dataset
using the same training regime presented in [52] and then finetune on the Phone2Proc environments for
the task of object navigation on 16 object categories. We use AllenAct [252] to train our models. More
details on the training pipeline are provided in the appendix.

In principle, it is fairly straightforward to adopt a more complex model architecture, but we found this
simple design to be highly performant not just in simulation but also in our real world experiments.
Similarly, it is also easy to train agents for other tasks, including one involving object manipulation using
an arm, since PHONE2PROC produces scenes that are fully interactive with support for all agents in
AI2-THOR [126] including the arm-based agent [61].

During fine-tuning, we lower the learning rate to 0.00003 to avoid catastrophic forgetting of the skills
learned in pre-training. We add a failed action penalty (0.05) in the reward shaping to encourage the agent
to avoid hitting the obstacles in the environment. This is especially important as we deploy these models
in the real world and would like to avoid damage to the environment or the robot. Instead of hand-tuning
the camera parameters to match perfectly with the real world, the FOV of the camera in simulation is
randomly sampled from a distribution approximating the real world.

Real-World Experiments. Models trained on procedurally-generated variants of the scene scans are then
directly evaluated in real environments. We use 5 environments: a 3-room apartment, a large 6-room
apartment, a real world test scene from RoboTHOR [49], a large re-configurable office conference room,
and a cafeteria. Models are evaluated against 5 different target objects from 3 different starting locations
in the environment. No training or calibration is performed in the real world.

No particular effort was made to arrange for ease of robotic experimentation. The goal was to use real
environments in their most natural setting. The lighting, object instances, textures, and window views are
not recognized by the PHONE2PROC scan and are thus unseen by the agent at training time. As there are
many objects in the real-world scenes that are not present in ProcTHOR’s asset library (e.g. whiteboards,
bicycle), there are several object categories in each environment that are novel to the agent. No additional
information is used in the preparation/scanning step besides the output of the RoomPlan API.

Experiments are run on LoCoBot [88], a low-cost, platform about 60cm tall using the PyRobot API [168].
The agent’s discrete action space is look up/down, turn right/left (each 30°), move ahead 25cm, and a
“done” action to indicate reaching the target. Actions are sampled using PyTorch’s categorical distribution.
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FPS in real is ~0.25, and for practical reasons, physical trajectories were limited to 250 or 500 steps
depending on the size of the environment.

3.5 Experiments

We provide extensive real-world evaluations of PHONE2PROC. In Sec. 3.5.1 we compare PHONE2PROC
to PROCTHOR in 5 diverse real environments. In Sec. 3.5.2 we show that PHONE2PROC performs as well
as a privileged upper bound setting that utilizes a simulated counterpart of the real-world environment,
painstakingly modeled by a digital artist. Sec. 3.5.3 illustrates the robustness of PHONE2PROC to various
realistic changes in the environment, showing how PHONE2PROC hugely improves over using static
reconstructions. Finally, we statistically analyze the significance of our results (Sec 3.5.4).

Scale of real-world evaluations. In aggregate we conduct 234 episodic evaluations in 5 diverse real-world
environments. Our environments are large and challenging and each episode takes between 5 and 20
minutes to run. This represents one of the largest and most diverse real-world evaluation studies of
sim-to-real indoor navigation agents. We put this number in the context of related works that provide 20
trials (1 scene) [26], 1 qualitative example [27], 36 trials (1 scene) [49] and 9 episodes (1 scene) [182]. A
recent study for PointNav for studying Sim-vs-Real correlation [110] conducts 405 real trials but only
uses a single laboratory setting.

Training models and baselines. All models use the same architecture and begin from a checkpoint
trained on ProcTHOR-10k train set for the task of object navigation. This checkpoint is state of the art on
6 benchmark Embodied Al tasks [52]. This checkpoint is then fine-tuned for SM steps on ProcTHOR-
10K train with modifications detailed in section 3.4.3, and is henceforth referred to as PROCTHOR or
“baseline”. The PHONE2PROC models are environment-specific and are fine-tuned on 1K procedurally
generated variants of scans of the relevant environment. Results for these are presented in Figure 3.5.

3.5.1 How Well Does Phone2Proc Work?

We evaluate PHONE2PROC in 5 diverse real-world environments: a 3-room apartment, a 6-room apartment,
1 RoboTHOR-Real apartment, a conference room, and a cafeteria. In each space, our model and the
baseline are each evaluated for 15 trials (5 object categories with 3 agent initial locations per category).
The 5 categories (apple, bed, sofa, television, and vase) were chosen to showcase both fixed objects
whose locations can be learned (e.g. television) and small objects that must be searched for (e.g. apple).
Where necessary (e.g. conference rooms do not usually contain beds), the bed and sofa are substituted for
environment-appropriate objects such as chairs or garbage cans. Starting locations are geographically
distributed and we avoid ones that would achieve trivial success.

Fig. 3.5 shows that in every real-world scene, PHONE2PROC performs remarkably well and significantly
outperforms the PROCTHOR baseline. In aggregate, PHONE2PROC achieves a Success Rate of 70.68%
compared to 34.68% for PROCTHOR. Overall, we find that the bigger environments with multiple rooms
(Robothor, 3 room apartment and 6 room apartment) are quite challenging for the baseline. PHONE2PROC
on the other hand, performs very effectively in these scenes, that require it to perform long range
exploration.

Table 3.1 compares PHONE2PROC with the same model architecture trained on Habitat [198] (implemen-
tation details on baseline training in the appendix). These results are presented on RoboTHOR-Real for
9 (instead of 15) episodes since Habitat only covers 3 of the 5 objects in our target set (bed, sofa, and
television).

3.5.2 How Does Phone2Proc Compare To A
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Figure 3.5: Results for PHONE2PROC vs ProcTHOR baseline in a variety of real environments. Each
number represents fifteen trajectories - five objects from three starting locations.

Model | Success Rate Episode Length
Habitat [198] 333 204.8
PROCTHOR [52] 333 92.5
PHONE2PROC (ours) | 77.8 82.6

Table 3.1: Results of 9 trajectories evaluated in RoboTHOR-Real.

Privileged Upper Bound?

RoboTHOR test scenes come with a carefully and manually reconstructed simulation counterpart. This
allows us to train a privileged model on this perfect replica. Producing this replica for a real scene took
5 days and is intractable practically but represents a theoretical upper bound, in terms of quality and
correctness, for static 3D reconstruction methods that may employ sensors such as LIDAR. The model,
referred to as Reconstructed Simulation or RECON, is only finetuned in this 1 scene. In simulation,
RECON achieves 100% success since it overfits that scene easily.

We evaluate PHONE2PROC and RECON for 15 episodes in the RoboTHOR-real apartment (Fig. 3.6).
PHONE2PROC is able to match the performance of this privileged baseline both in terms of Success and
Episode length, which shows the effectiveness of our proposed approach to scan the target environment
and train within its variations. In Sec 3.5.3, we show the pitfalls of this privileged model.

3.5.3 How Robust is Phone2Proc to Chaos?

In reality, our homes and offices aren’t static and picture-perfect. Objects move around, furniture gets
shifted, kids leave their toys on the floor, people keep moving around in the scene, lighting keeps changing
throughout the day, and more! We evaluate the baseline model PROCTHOR, the privileged model RECON
and our model PHONE2PROC in these settings (Fig. 3.7).

First, PROCTHOR does poorly in all settings, unsurprising given that it also fails on the episode with
no variation. RECON performs well with no variations (consistent with Fig. 3.6). However, it performs
very poorly when variations are introduced in the scene. When objects are moved around by just 1.5m,
RECON fails, as it has memorized the location of every target object. Clutter and chair position adjustment
confuses it, and the agent is simply unable to move around the scene and explore effectively. Moving
the dining room furniture closer to the wall, as one might in a real house, produces interesting behavior.
RECON calls the Done action for the television target when it sees the lamp. This is because in the original
scan, the lamp was next to the television, and this is what the model likely memorized. RECON also fails
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Figure 3.6: Comparison with the reconstructed simulation. We compare PHONE2PROC with the
privileged reconstruction baseline among 15 different tasks (each task represents a different pair of agent’s
initial location and target object). Each square shows the episode length of the corresponding model for
each task. The red squares represent failed episodes and the blue ones indicate successful ones. Despite
the baseline’s privileges, PHONE2PROC achieves a similar success rate and episode lengths.
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Recon X X X X 26.7%
Phone2Proc 66.7%

Figure 3.7: Illustration of the scene disturbances used to comparatively evaluate models, along with their
performances over each episode. The third column showcases the performance of models navigating to a
vase when the object’s location is changed. For the last column, a full set of 15 trajectories is evaluated

for each model. For other disturbances, we evaluated models for the target of Television.

when people move around during an episode. In stark contrast, PHONE2PROC is robust to every variation
we tested, showing that procedurally generating variations of the scan helps train robust agents.

Finally, we tested all three models for robustness towards a change in camera parameters between
simulation and the real robot. A full 15 trajectories were evaluated for each model trained with a wide
vertical FOV and evaluated with a narrow one. PHONE2PROC is robust to this change, while RECON’s

performance drops drastically.

3.5.4 Statistical Analysis

As described above, we have jointly evaluated PHONE2PROC and PROCTHOR models across 3 starting
positions in 5 real environments with 5 target objects per environment (chosen from 7 unique types).
Together this amounts to (2 model types) x (3 positions) x (5 environments) X (5 targets) = 150
datapoints. In order to validate the statistical significance of our results, we follow a similar analysis as
in [250] and model agent success using a logistic regression model in R [194]. In particular, here we
model all exogenous variables as fixed effects and, as starting positions are inherently nested within
environments, we include all environment and starting position interactions. When fitting this model, we

obtain the coefficient estimates
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| (Intercept) Phone2Proc  Bed Chair GarbageCan Sofa TV  Vase
Coef. 0.17 0.33 0.00 041 -0.12 0.2 -0.03 0.13
p-value 0.31 <0.0001 097 0.02 0.59 0.13 0.78 0.27

where, for space, we have excluded coefficients corresponding to environments and locations, as none
of these coefficients were statistically significant at a 0.05 level. As the above shows, the coefficient
of interest (PHONE2PROC) is statistically significant even at a 0.0001 level. Interpreting these results,
we see that when holding other factors constant, the use of a PHONE2PROC model is associated with
exp(0.33) = 1.39 times greater odds of success (95% confidence interval: [1.2, 1.62]) than when using a
PROCTHOR model. Of all object categories, only the coefficient associated with chair was found to be
statistically significant at a 0.05 level suggesting that chairs were associated with higher levels of success
(i.e. may be generally easier to find). Altogether, we find strong statistical evidence suggesting that, across
tested environments and object categories, PHONE2PROC was associated with higher success rates and
that the esti S ) ) o

[ |
02 m

Figure 3.8: Qualitative results. These demonstrate the ability of PHONE2PROC models to navigate to
their desired object. The top-down map is for visualization purposes only and is an approximation of the
path taken by the agent.

3.5.5 Qualitative Analysis

Fig. 3.8 illustrates exemplary trajectories from each test environment with a few ego-centric RGB images
that is the agent’s only input. The trajectories show meaningfully different behavior for large vs. small
objects (bed, sofa, and TV vs. apple and vase).

For large objects that don’t change location drastically (e.g. row 1), the agent seems to initially localize
itself using known landmarks that appear in the scan (similar object categories, for instance) and then
demonstrate efficient motion towards the room which contains the target object. We observed during our
trials that often, when an agent navigating toward a large target loses its way, it would double back to a
familiar large object and then restart direct progress. Note that the agent has no ground truth localization
and must rely on its observations and its recollection of environment layout and object presence.
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Environment Area Longest # Rooms # Objects # Scanned
(m?) Path (m) Objects

RoboTHOR-Real | 34.5 8.1 4 51 14
6-Room Apartment|104.4  21.8 6 189 57
3
1
1

3-Room Apartment| 65.4 8.2 105 26

Conference Room | 98.3  10.0 48 32

Cafeteria 1332 18.8 252 67
Table 3.2: The test real environments have a wide variety of layouts, usages, space, and object density.
For visual layouts, see Fig. 3.2.

In contrast to big objects, for smaller items, the agent needs to explore efficiently to find the target. For
instance, in the fourth row of Fig. 3.8, the agent searches for a small object that does not appear in the
scan but is placed randomly in training rooms. Though again, it has no map, ground truth localization,
or additional memory support, it demonstrates true exploration and high coverage of the possible area,
ultimately achieving success (more qualitative results are provided in the supplementary videos).

3.5.6 Quantitative Analysis of The Environments

Results presented in Fig. 3.5 span a wide range of space usage, layout, and complexity as quantified in
Table 3.2 to better demonstrate the power of PHONE2PROC. The conference room and cafeteria are large
open spaces. The three living spaces require moving from room to room to locate objects. The 6-room
apartment for instance, while most comparable in floor area to the conference room, is a long and narrow
layout that requires hallway traversal for nearly every room transition. PHONE2PROC is most helpful in
these environments over the baseline but makes a significant improvement in all layouts and semantic
types of space.

3.6 Conclusion

In this paper, we introduced PHONE2PROC, a simple yet effective approach for training performant
agents that are robust to the unpredictable nature of the real world. We demonstrated the capabilities
of PHONE2PROC in five diverse environments and showed significant improvements in sim-to-real
performance. Our environment-conditioned procedurally generated scenes are fully interactable, and we
believe that future work will continue to explore its capabilities.
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3-Room Houses

Figure A.1: Examples of 3-room houses generated in PROCTHOR-10K.
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4-Room Houses

Figure A.2: Examples of 4-room houses generated in PROCTHOR-10K.
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5-Room Houses

Figure A.3: Examples of 5-room houses generated in PROCTHOR-10K.
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6-Room Houses

Figure A.4: Examples of 6-room houses generated in PROCTHOR-10K.
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7+ Room Houses

Figure A.5: Examples of 7+ room houses generated in PROCTHOR-10K.
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Figure A.6: Examples of room spec hierarchies used to sample differently sized houses.

A.0.1 Room Specs

Room specs provide the ability to specify the rooms that appear in a house, the relative size of each room,
and how the rooms are connected with doors. Their idea was first proposed in [153]. A room spec is
manually specified with a tree data structure.

Figure A.6a shows a simplified example of a room spec with four rooms: bedroom, bathroom, kitchen,
and living room. In this room spec, there are two subtrees, comprising Z, = {bedroom, bathroom} and
Zr1p = {kitchen, living room}. At each level of the tree, there is a constraint that there must be a direct
path connecting every child node of a parent. Thus, in our example, there will be a path between the
bedroom and the bathroom, a path between the kitchen and the living room, and another path connecting
Zypy, to 2y, We can also specify which room types we would prefer not to have a path between it and the
parent. For example, we typically do not want the bathroom to have 2 doors, such as between it and the
bedroom and between it and a room in Z;,.

Each tree node, below the root of the tree, is also assigned a growth weight, which approximates the
relative size of the node compared to all other nodes that share the same parent. For instance, we might
assign both Zy;, and Zy;,, a growth rate of 1, to be roughly the same size. But, if we want the bedroom
to take up roughly 60% of the Z;’s area, then we might assign the bedroom a growth rate of 3 and the
bathroom a growth rate of 2.

Room specs allow us to flexibly choose the distribution of houses we sample, allowing us to specify
massive mansions, studio apartments, and anything in-between. Moreover, just a few room specs can
go a long way. To generate our houses, we use 16 room specs, which each uses between 1 to 10 rooms.
To generate the houses dataset, we assign a sampling weight to each of our room specs, and then use
weighted sampling to sample a room spec for each house.

A.0.2 Sampling Floor Plans

The size and shape of the house are sampled to form the interior boundaries. Room specs specify
the distribution over the dimensions of the house. Figure A.7 visualizes the process of sampling an



APPENDIX A. PROCTHOR APPENDIX 63

Ts

Figure A.7: An example of the interior boundary cut algorithm. The images show a top-down view of the
house’s floor plan. First, we sample an interior boundary rectangle (z, z5), which is shown on the left.
Then, we make n, rectangular cuts to the corners of the rectangle to make the interior boundary of the
house a more complex polygon. In this case, we make n. = 3 cuts to form the final interior boundary,
which is shown on the right.

interior boundary, where we first sample the size of the boundary and then make cuts to the corners
to add randomness. The sampling starts off by choosing the initial upper bound of the top-down z
and z size of the house, in meters, respectively denoted as x, and z;. Each dimension is an integer.
In most room specs, each dimension is independently sampled from the discrete uniform distribution
Ty, zs ~ U(max(Cmin, fla/Tr — Ha/2), fiq\/Tir + 1a/2), inclusive. However, individual room specs can
override the x4 and z, sampling distributions. Here, n,. represents the number of rooms in the house, ¢y,
is set to 2 and represents the minimum size of x5 and z,, and p,, is set to 3 and represents the average size
of x4 and z4 per room.

Probability Distribution Over the Cuts Per Number of Rooms in a House
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Figure A.8: The probability distribution over the number of cuts, n., made to the rectangular boundary
(x4, z5) with respect to the number of rooms in the house, n,.. Notice that when there are more rooms in
the house, the number of cuts in the distribution increases.

Once we have the rectangular boundary (z, z5), we then make several cuts to the outside of the rooms
such that the interior boundaries can take on the shape of more complex polygons. The number of cuts,
N, is sampled from the distribution n,. ~ |10 - Beta(c, 8.) + /2], where . = »~/2 and 3. = 6. Figure
A.8 shows the distribution that is formed with respect to the number of rooms in the house, n,.. When
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there are more rooms, the probability distribution over the number of cuts increases. Since the range of
the beta distribution is (0, 1), the upper bound on the number of cuts is exactly 10.

The size of each cut is a rectangle, in meters, denoted by (c,, ¢,). Both ¢, and ¢, are sampled from
integer distributions. We sample from ¢, ~ U(1, max(2, min(zs — 1, |a@max/2]) — 1), inclusive, where
Gmax 18 set to 6 representing the maximum cut area. We then sample ¢, ~ U (1, amax — ¢;). The position
of where the cut happens is anchored to one of the 4 corners of the interior boundary, where the exact
corner is independently and uniformly sampled each time.

Since the size of each cut is an integer, and the rectangular boundary sizes are also integers, we can
efficiently represent the interior boundary with a (zs, z;) boolean matrix. Here, we could have 1s
representing where the inside of the interior boundary and Os representing the outside of the interior house
boundary.

[ Bedroom [ Bathroom
[[] Kitchen [ Living Room

Figure A.9: An example of the recursive floor plan generation algorithm, given an interior boundary and
the room spec in Figure A.6a. Here, we first divide the room into a “bedroom & bathroom” and a “kitchen
& living room” zone. Then, within the “bedroom & bathroom” zone we place both the bedroom and
bathroom, and within the “kitchen & living Room” zone, we place both the kitchen and living room.

Given a room spec and an interior boundary, we use the algorithm proposed in [146] to divide the interior
boundary into rooms. The algorithm recursively subdivides the interior boundary for each subtree in the
room spec. Figure A.9 shows an example using Figure A.6a’s room spec. The algorithm first divides the
interior boundary into two zones, the “bedroom & bathroom” zone and the “kitchen & living room” zone.
The “bedroom & bathroom” zone then subdivides into two rooms, the bedroom and bathroom. Similarly,
the “kitchen & living room” zone is also subdivided into two rooms, the kitchen and living room. The
growth weight is used to approximate the size of each subdivision. By recursively subdividing the zones
of each subtree, we satisfy the constraint that we can traverse between child nodes of the same parent in
the room spec.

Finally, we scale the entire floor plan by s ~ U(1.6,2.2). Scaling the interior boundary to be larger
provides more room for the agent to be able to navigate within the houses. Using a range of values also
provides more variability on the size of the houses. We set the upper bound to 2.2 based on the empirical
quality of the houses, where values above that often left too much empty space.

A.0.3 Connecting Rooms

Figure A.10 shows the 3 types of ways adjacent rooms may be connected. Specifically, rooms may be
connected using 3 different types of connections: doorways, door frames, or open room connections.
We determine which rooms should have doors between them based on the constraints in the room spec.
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Figure A.10: An example of the 3 ways to connect different rooms, using either a doorway (left), door
frame (middle), or open room connection (right).

Amongst adjacent rooms that may have doors between them, subject to the constraints in the room spec,
we randomly sample which rooms have doors. We also impose the constraint that neighboring rooms in
the room spec may have at most 1 room connected to it.

To choose the type of connection, we consider the rooms we are connecting. Specifically, we only allow
open room connections and door frame connections between kitchen and living room room types. We
impose this constraint because it would be unrealistic for a room like a bathroom to be fully visible from
another room. For connecting room types that do support open room connections or door frames, we
annotate the probability of sampling a doorway, door frame, and open room connection. Between a
kitchen and living room the probability is 0.375 for sampling both an open room connection and a door
frame connection, and 0.25 for sampling a doorway connection.

If a doorway or door frame is sampled, we filter to use a valid asset that is smaller than the wall connecting
the rooms. For our generation, the minimum wall size is always greater than a single door size, but
occasionally the filter might remove double doors from valid doors that can be sampled as they would
be too big. The placement of the door is then uniformly sampled from anywhere along the wall. For
doorways, the open direction is uniformly sampled. Finally, if the open state from any 2 doorways collides,
we also use rejection sampling to potentially change the open direction and modify the placement of
doorways.

Each house also has a permanently closed exterior door connecting to the outside. We prioritize placing
this door in kitchen and living room room types, as it is unnatural to have to go through a bathroom or
bedroom to go outside. However, in the case where the room spec does not include a kitchen or living
room (e.g. if the room is a standalone bathroom), we randomly place a door to the outside in one of the
remaining rooms.

A.0.4 Structure Materials

Wall materials. To choose the materials that make up the walls, we consider 2 families of wall materials:
solid colors and texture-based materials. Our solid color materials consist of 40 unique colors of popular
paint colors found in houses. We constrain ourselves to only using popular paint colors, so we do not
randomize the walls to unrealistic colors such as bright green or yellow. For the texture-based materials,
we annotate 122 different AI2-THOR materials to be suitable as wall materials. These include materials
for brick textures, drywall textures, and tiling textures, amongst others.
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Ceiling Height Distribution
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Figure A.11: The distribution of the ceiling height of each house, in meters.

Each wall in a room shares the same materials. For each room, we sample it if its materials are a solid
color with wj,j;z ~ Bernoulli(0.5). It is sometimes the case in real life that all rooms in a house share the
same material (e.g. every room in an apartment is painted with white walls). We therefore also have a
parameter wyq,, ~ Bernoulli(0.35) that specifies if all rooms in the house will have the same material.

Ceiling material. The entire ceiling of the house is always assigned to a single wall material. If wggye,
then the ceiling material is also set to the wall material. Otherwise, it is independently sampled with the
same wall material sampling process.

Floor materials. We annotate 55 materials in AI2-THOR as floor materials. Most commonly, these
materials are wood materials. For each room, we independently sample its floor material from the set
of annotated floor materials. However, similar to wall materials, we independently sample fi;,e ~
Bernoulli(0.15) that specifies if all rooms in the house will have the same material.

A.0.5 Ceiling Height

The ceiling height for the house, in meters, is sampled from ¢;, ~ Amin + (Amax — Amin) - Beta(ay, 8r),
where we set Apin = 2.5, hpax = 7, ap = 1.25, and 5, = 5.5. Figure A.11 shows the ceiling height
distribution that is formed. All rooms in the house have the same ceiling height.

The minimum and mean values were chosen based on the typical height of an American apartment, while
B, allows some of the train houses to have much larger ceilings.

A.0.6 Lighting

Lighting Placement. Each procedural house places two types of lights: a directional light and point
lights. The directional light is analogous to the sun in the scene, where only 1 is placed in each scene.
Light from point lights are analogous to the light emitted from lightbulbs. We place a point light in each
room near the ceiling, centered at the centroid of the room’s floor polygon. Using the centroid ensures
that the light is always placed inside of the room, even for L-shaped rooms. Additionally, desk lamp and
floor lamp objects have a point light associated with them.

Effects by the time of day. Skyboxes may appear at 3 different times of day: midday, golden hour, and
blue hour. The time of day determines the intensity, hue, and direction of the ambient outdoor lighting.
For each time of day, there exist multiple skyboxes, which dictate the lighting of the environment. Figure
A.12 shows examples of how the time of day visually affects the scene. At this time, there are 16 midday
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Figure A.12: Examples different skyboxes in a scene with a midday skybox (left), golden hour skybox
(middle), and a blue hour skybox (right). Notice how the colors of the images differ and how the content
outside of the window changes with the skybox.

skyboxes, 5 golden hour skyboxes, and 1 blue hour skybox, based on full 360-degree photos taken in
Seattle and San Francisco.

A.0.7 Object Placement

In this section, we discuss how objects are placed realistically in the house. We hypothesize reasonable
object placement is necessary in order to train efficient agents. For instance, if a toilet could appear
anywhere in the house, the agent would have a much harder search problem, leading to longer episodes,
than if the toilet was always in the bathroom. Moreover, we do not want objects to appear in unnatural
positions, such as a fridge facing the wall, as it would make it unnatural, and even unusable, for interaction.

Finally, we do not always want objects to spawn independently. For instance, we might want a table to be
surrounded by chairs. We achieve dependant sampling by developing SAGs, which are described in the
section that follows.

Assets

The ProcTHOR asset database consists of 1,633 interactive household assets across 108 object types
(see Appendix ?? for more details). The majority of assets come from AI2-THOR. Windows, doors, and
counter tops are built into the exterior of rooms in AI2-THOR, which prevents us from spawning them in
as standalone assets. Thus, we have also hand-built 21 windows, 20 doors, and 33 counter tops.

Asset Annotations. Our assets include several annotations that help us place them realistically in a house.
Figure A.13 shows an example of the asset annotations used to place an arm chair. For an individual
asset, we annotate its object type, computationally obtain its 3D bounding box, and partition assets of
object types into training, validation, and testing splits. Then, we annotate how each object type might be
spawned into the house. Annotating the 108 object types, as opposed to annotating the 1,633 individual
assets, allows us to scale up the number of unique assets dramatically. Moreover, it does not require any
new annotation to add an asset that can be grouped with an existing object type.

If instances of an object type cannot be placed independently on the floor, the rest of its annotations are
not considered. For instance, we do not allow television object types to be placed alone on the floor,
rather they are often placed on top of a television stand or mounted on the wall, which is discussed later
in this section. Similarly, we also annotate small objects, like a fork, pen, and mug to not be placed
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Asset Annotations Object Type Annotations
Object Type | Arm Chair In Living Rooms | 2 In Bedrooms In Kitchens | 0 In Bathrooms | 0
Bounding Box | (0.9, 0.88, 0.74) On Edge v In Corner v | In Middle | X
Split | Train Multiple Per Room v | On Floor v

Figure A.13: An example of the asset annotations used to place an arm chair asset. This particular instance
is annotated with its object type, bounding box, and split. Annotations about how it is placed in the house
are done at an object type level, applying to all instances of that type.

independently on the floor. However, typical large object types, such as counter top, arm chair, or fridge
object types can be placed independently on the floor.

Among the remaining object types, we annotate where and in which rooms the object type may appear.
Each object type has a room weight, ,, € {0, 1,2, 3}, corresponding to how likely it is to appear in each
room type. For each room type, a 0 indicates the object should never appear (e.g., a fridge in a bathroom);
a 1 indicates the object may appear, but is unlikely; a 2 indicates that the object appears quite often; and
a 3 indicates that the object nearly always appears (e.g., a bed in a bedroom). To determine where the
object is placed, we annotate whether it may appear on the edge, in the corner, or in the middle of a room.
For example, we annotate that a fridge can be placed on the edge or in the corner of the room, but not in
the middle. We also annotate whether there can be multiple instances of an object type in a single room.
Here, we annotate that multiple toilet object types cannot be in the same room, for instance.

Asset Splits. If an object type has over 5 unique assets, then those assets are partitioned into train,
validation, and testing splits. Specifically, approximately 2/3 of the assets are assigned to the train split,
and approximately 1/6 of the assets are assigned to each of the validation and testing splits. For object
types that have 5 or fewer unique assets, they may appear in any split. In general, the more visual diversity
an object type has, the more instances of that object type exist. For instance, there are many chair objects,
but there are much fewer CD, toilet, and fork objects. Appendix ?? shows the precise count of each object

type.

Semantic Asset Groups (SAGs)

A Semantic Asset Group (SAG) provides a flexible and diverse way to encode which objects may appear
near each other. The power of SAGs comes in their ability to support randomized asset and rotational
sampling. SAGs can be created and exported in seconds with our user-friendly drag-and-drop web
interface.

Figure A.14 shows an example of how we might construct a SAG that has two chairs pushed into the side
of a dining table. The SAG includes two chair samplers and a dining table sampler. Asset samplers contain
a set of unique 3D modeled asset instances that may be sampled. When the SAG is instantiated, each
asset sampler randomly chooses one of its instances. Asset samplers can also be linked, where multiple
samplers sample the same asset instance each time. Here, linking may allow for multiple instances of the
same chair to be placed at a dining table, instead of independently sampling a different chair for each
sampler.

The ability to randomly sample assets to place in a SAG is incredibly expressive. For instance, consider a
SAG with samplers for a TV stand, television, sofa, and arm chair. If each of these samplers can sample
from just 30 different 3D modeled asset instances, then there are over 800k unique combinations of
instances that can make be sampled from that SAG.
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Figure A.14: An example of a semantic asset group (SAG), where two chair samplers are parented to a
dining table sampler. Both chairs are anchored to the top middle of the table.

Asset samplers define how assets are positioned relative to one another. SAGs are constructed by looking
at instances of asset samplers from their top-down orthographic images, such as the one shown in Figure
A.14a. Here, both of the chair samplers are parented to the dining table sampler. Each child asset sampler
is anchored to its parent asset sampler vertically in )V = {ToP, CENTER, BOTTOM} and horizontally in
‘H = {LEFT, CENTER, RIGHT}. Each child asset sampler’s pivot position can similarly be set vertically
in V and horizontally in . For instance, in Figure A.14a, both chair samplers are anchored to the parent
vertically on TOP and horizontally in the CENTER. But, the chair sampler on the left’s pivot position is
vertically in the CENTER and horizontally on the RIGHT, whereas the chair sampler on the right’s pivot
position is vertically in the CENTER and horizontally on the LEFT. Figure A.15 shows more examples
of how a plant or floor lamp sampler may be positioned around an arm chair sampler. Each child asset
sampler can then have an (x, y) offset, which is the distance from the parent sampler’s anchor point to the
child sampler’s pivot position.

(@) (b) (© ()
CENTER RIGHT Anchor CENTER RIGHT Anchor BoTTOM CENTER Anchor BOTTOM CENTER Anchor
CENTER LEFT Pivot BOTTOM LEFT Pivot CENTER CENTER Pivot Top CENTER Pivot

Figure A.15: Instantiations of a SAG that places a plant or floor lamp sampler S, around a parented arm
chair sampler S, with anchor and pivot position annotations. Notice that the placement from S, reacts to
the size of the asset sampled from S,,. None of the examples have any offset.

The motivation for the relative positioning of asset samplers is to prevent the meshes from clipping into
each other. For instance, with the same SAG in Figure A.14a, consider what would happen if the dining
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(a) X Rejected (b) v Accepted

Figure A.16: Rejection sampling is used to make sure objects placed in SAGs do not collide. Left: the
chair collides with the dining table, and hence it is rejected; Right: none of the objects in the instantiated
SAG collide with each other, so the SAG is accepted as valid.

table sampler samples a table that is double the size of the current table. Instead of the chairs being stuck
in a fixed global position, and effectively colliding with the new dining table, the chairs will reactively
move back, and be re-positioned to remain slightly tucked under the larger table. Moreover, consider that
the size of instances that are sampled from an asset sampler are often quite different. For instance, one
table might be square-ish, while another is elongated. If we only used a CENTER CENTER pivot and an
offset, one would not be able to reliably place asset samplers, containing differently sized objects, directly
beside each other without it resulting in clipping.

While setting anchoring and pivot positions solves many mesh clipping issues, some cases may still arise.
Figure A.16 shows an example, where if our dining table sampler samples a short dining table, it may clip
into certain chairs. Such issues are rare in practice, but object clipping would lead to less realistic and
interactive houses. To solve the clipping issue, we use rejection sampling to resample the assets of a SAG
until none of the 3D meshes of the sampled assets are clipping.

In PROCTHOR-10K, we construct 18 SAGs, which can be instantiated with over 20 million unique
combinations of assets. These include semantic asset groups for chairs around tables, pillows on top of
beds, sofas and arm chairs looking at a television on top of a TV stand, faucets on top of sinks, and a desk
with a chair, amongst others.

Floor Object Placement

We start object placement by first placing objects on the floor of the house. Objects are independently
placed on a room-by-room basis, where we may first place objects in the bedroom and then place objects
in the bathroom, without either affecting each other.

For each room, we filter the objects down into only using objects that have a room weight r,, > 0 in the
given room type, and that have the annotation that they can be placed on the floor. Here, for instance, a
chair object may have the annotation that it can be placed on the floor, but a knife object may not.
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Figure A.17: Diagram detailing how floor objects are placed in a room. First, we rectangularize the
top-down view of the room’s open floor plan by drawing horizontal and vertical dividers from each corner
point. Then, we construct all possible rectangles that are formed within the dividers. We then sample one
of those rectangles and place the object within that rectangle. The sampled object’s top-down bounding
box (with margin) is shown in blue. The bounding box is then subtracted from the open floor plan before
repeating the process again.
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At this stage, we simplify rooms to just look at the top-down 2D bounding box that makes up the room in
the floor plan. We also simplify objects to just look at its top-down 2D bounding box, of size (0, 0p,).
These simplifications make it easier to determine if an object will fit in the room, specifically in a particular
rectangle.

Figure A.17 illustrates the iterative process of placing objects in the scene. First, the polygon forming the
area left to place an object is partitioned into rectangles. The rectangles come from drawing a horizontal
and vertical grid line at all corner points of the open polygon. Here, we can easily obtain the largest
rectangle remaining in the open room polygon. We sample 7, ~ Bernoulli(0.8) to determine if the next
object to be placed should be placed inside of the largest rectangle. Otherwise, we randomly choose
amongst all possible rectangles, weighted by the area of each rectangle.

Once we have the rectangle (r,,, r,) where the object should be placed in, we filter our objects to only
those that would fit, both semantically and physically, in the rectangle. Semantically, we consider 3
scenarios: the rectangle being on the corner, edge, or middle of the room’s polygon.

If any of the rectangle’s corners is in a corner of the room, then we will place an object in that corner of
the room. If multiple of the rectangle’s corners are in a corner of the room, then we uniformly sample a
corner amongst one of those corners.

Now, we will filter down objects and asset groups to only consider:

1. Those that are annotated specifying that they can be placed in the corner of the room. For example,
we might annotate a fridge to be placed in the corner of the room, but we might not annotate a SAG
consisting of a dining table to be placed in the corner of the room.

2. The annotated split of the asset instance matches the current split of the generated house. See
Appendix A.0.7 which talks about asset splits to create train/val/test homes.

3. The top-down bounding box of the object (with margin) must fit within the chosen rectangle. For a

corner object, Figure A.18b shows the 2 valid rotations that this object may take on. Specifically,
the back of the object may be against either wall. Then, we filter down remaining objects to
only use those where the object’s bounding box fits within the rectangle’s bounding box; that is,
(on + Wpag < Ty and 0y + Wpaq < 73,) OF (0f, + Wpaa < T, a0 0y + Wpaq < 74y). If both conditions
are valid, we uniformly choose one of the rotations of the object’s bounding box.
We add margin around objects to make sure it is always possible to navigate around them. Objects to
be placed in the middle of the room have m,,; = 0.35 meters of margin on each side. Objects on
the edge or corner of the room have wp,; = 0.5 meters of margin only in front of the object, which
enables objects to be placed directly beside it.

We sample an object or asset group that satisfies all of the previous conditions. If there are no objects or
asset groups that satisfy all conditions, we continue to the next iteration and remove the selected rectangle
from consideration. We slightly prioritize placing asset groups over standalone assets when possible.
Once we have chosen an object or asset group, the bounding box with margin is then anchored to the
corner of the rectangle, and hence to the corner of the room. We then subtract the object’s bounding box,
with margin, from the open polygon representing the space remaining in the room before doing the same
process again.

If the rectangle is along the edge, we sample 7,4, ~ Bernoulli(0.7) to determine if we should try to place
an object on the edge of the rectangle, or if we should try and place it in the middle. If the rectangle is not
along the edge or on the corner of the room, then we will always try to place an object in the middle of it.
We use a similar filtering process, as the one described with edge rectangles, to filter down objects to those
that only fit within the bounds of the rectangle. However, as depicted in Figure A.18a and Figure A.18c,
edge objects can only have their backs to the wall, and middle objects can be rotated in any 90-degree
rotation.
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(a) Edge Rotations (b) Corner Rotations (c) Middle Rotations

Figure A.18: Valid rotations of objects when placed on the edge, corner, and middle of the room. Objects
placed on the edge or corner of the room always have their backs to the wall. Objects in the middle of the
scene can be rotated in any direction. By constraining rotations of objects, we ensure an object on the
edge of the room, such as a fridge or drawer, can still be opened.

The iterative process of sampling a rectangle from the open polygon of the room, placing an object in that
rectangle, and subtracting the bounding box formed by the object in the rectangle, continues on for 7;,
where r; is sampled from

1 p=1/200
4 p=2/20
ri~<5 p=4/200 . (A.1)
6 p=20/200
7 p=173/200

Sampling r; allows us to infrequently have rooms in the house where there are very few objects, which is
sometimes the case in real-world homes. It should also be noted that there can be more than r; objects on
the floor of the scene if some objects in the scene are in SAGs.

By iteratively choosing the largest, or near largest, rectangle in the room’s open polygon, placing an object
in it, and subtracting the object’s bounding box with margin from the open room polygon, we enable great
coverage across the entirety of the room, and hence the entirety of the house.

Wall Object Placement

After placing objects on floors, we then place objects on walls. We currently place window, painting, and
television objects on the walls. Figure A.19 shows some examples. Window and television objects may
appear in kitchen, living room, and bedroom room types. Paintings may appear in any room type.

Windows. Window objects are the first objects we place on the walls of the house. We only consider
placing a window on walls that are connected to the outside of the house, such that we do not place a
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Figure A.19: Examples of objects placed on the wall of a house, including a window (left), painting
(middle), and television (right).

window between two indoor rooms. For each kitchen, living room, and bedroom in the house, we sample

0 p=0.125
ney~<41 p=0.375 (A.2)
2 p=0.>5

maximum window objects to be placed.

For each wall in a given room, we look at the segment formed by each edge connecting 2 adjacent corners.
If there is a floor object placed along that edge (or corner) of the wall, we subtract it from the segment.
Here, the segment may break into different segments, where each segment is treated just like the original
one. If the length of any segment is smaller than the minimum window size in the split, we remove
the segment. We then use a uniform sample over the remaining segments, weighted by their lengths, to
determine where to place the window. If no segments are longer than the smallest window, we move on to
the next room in the house. A window smaller than the length of the segment is then uniformly placed
somewhere along the sampled segment. The window is vertically centered along the wall between the
floor and wax = min(3, c). All segments along the wall where the window was placed are removed
from future sampling calls, and we continue this process n,, times.

Paintings. Painting objects are placed on the walls after window objects. They may be placed in any
room. The maximum number of painting objects that are attempted to be placed in each room is sampled
from

0 p=0.05
1 p=0.1
np~<2 p=05 . (A.3)
3 p=20.25
4 p=0.1

The placement of painting objects is similar to the placement of window objects. However, multiple
painting objects may be placed along the same wall, so instead of removing the entire wall segment after
an object is placed on it, we subtract the width of the painting from the segment. Moreover, we also allow
painting objects to be placed above edge floor objects if the height of the edge object is less than 1.15
meters. Here, this allows for a painting to be above an object like a counter top, but not behind a taller
object like a fridge.
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House Bias Distribution
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Figure A.20: The house bias distribution by, that offsets the probability of attempting to spawn an
object in a receptacle.

The vertical position of each painting is sampled at 0, ~ Win + (Wmax — Wmin) - Beta(12, 12), where
Wiin 18 the maximum height of a floor object along the wall line. Here, we allow a painting to be placed
above an object along the wall of the room, such as placing it above a counter top. Sampling from
Beta(12, 12) allows for some randomness in the sampling process while still having a large density near
the center.

Televisions. Television wall objects may only be placed in living room, kitchen, and bedroom room types.
Only 1 wall television may be placed in each room. From our annotations, television objects cannot be
placed standalone on the floor. However, a television is often placed in a SAG, on top of an object like
a TV stand. So as to not place too many television objects in the same room, we only filter by rooms
that do not have a television object already in them. Amongst the remaining rooms, if the room type is a
living room, we sample Bernoulli(0.8) if we should try placing a wall television in the room. For kitchen
and bedroom room types, we sample from Bernoulli(0.25) and Bernoulli(0.4), respectively. We only
consider television objects that could be mounted to a wall (i.e. they do not have a base that is sticking
out of the object). Television wall objects sample from the same vertical position distribution as painting
objects, and follow the same placement on the walls as painting objects.

Surface Object Placement

After placing objects on the floor and wall of the house, we focus on placing objects on the surface of the
floor objects just placed. For example, we may place objects like a coffee machine, plate, or knife on of a
receptacle like a counter top.

For each receptacle object, we approximate the probability that each object type appears on its surface.
We use the hand-modeled AI2-iTHOR or RoboTHOR rooms to obtain these approximations. Here, we
compute the total number of times each object type is on the receptacle type and divide it by the total
number of times the receptacle type appears across the scenes.

For each receptacle placed on the floor, we look at the probability of each object type pg,ay that it has
been placed on that receptacle. We then iterate over the object types that may be on the receptacle. For
each object type, we try spawning it on the receptacle if Bernoulli(pspawn + Dhouse + Drecepracie + Dobject)
where
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* bpouse denotes the additional bias of how likely objects are to be spawned on receptacles in this
particular house. Each house samples

bhouse ~ (bhuuse-max - bhouse-min) : Beta(3~57 19) + bhuuse-mim (A4)

where bpouse-min = —0.3 and bpouse-mar = 0.1. Figure A.20 shows the distribution that by, forms.
Using a house bias allows for some houses to be much cleaner or dirtier than others, whereas cleaner
houses would have more objects put away that are not on receptacles.

* brecepracie denotes the additional bias of how likely an object is to be spawned on a receptacle. The
default receptacle bias is 0.2, which is only overwritten by shelving unit (0.4 bias), counter top
(0.2 bias), arm chair (0 bias), and chair (0 bias). Receptacle biases were manually set based on the
empirical quality of the houses.

* bopject denotes the additional bias of how likely a particular object is to spawn in the scene. By default,
bobject 1s set to 0, and overwritten by house plant (0.25 bias), basketball (0.2 bias), spray bottle (0.2
bias), pot (0.1 bias), pan (0.1 bias), bowl (0.05 bias), and baseball bat (0.1 bias). Object biases were
also manually set based on the empirical quality of the houses to ensure more target objects appear in
each of the procedurally generated houses.

Note that Dspawn + brouse + Dreceptacte + bobjec: may be greater than 1, in which case we will always try to
spawn the object on the receptacle, or less than 0, where we will never try to spawn the object on the
receptacle.

To attempt to spawn an object of a given type on a receptacle, we will sample an instance of that object
type and randomly try n,, = 5 poses of the object to try and fit the object instance on the receptacle.
If the object instance fits and does not collide with another object, we keep it there. Otherwise, we try
another pose of the object on the receptacle until we reach 7, attempted poses. If none of the attempted
poses work, we continue on to the next object type that may be on the receptacle.

If the first object of a given type is placed successfully on a receptacle, we attempt to place n,, ~
min(smax, Geom(Pspawn) — 1) — 1 more objects of that type given type on the receptacle. Here, spax is
set to 3, representing the maximum number of objects of a type that may be on a receptacle. We ignore
the biases to not have too many objects of a given type on the same receptacle.

A.0.8 Material and Color Randomization

Several object types may have their color randomized to a randomly sampled RGB value. Specifically, for
each vase, statue, or bottle in the scene, we independently sample from 7. ~ Bernoulli(0.8) to determine
if we should randomize the object’s color. These objects were chosen because they all still looked natural
as any solid color. Figure A.21a shows some examples of randomizing the color of a vase.

For each training episode, we sample from r,,, ~ Bernoulli(0.8) to determine if we should randomize the
default object materials in the scene. Wall, ceiling, and floor materials are left untouched to preserve wy,ig
and Wy sampling parameters. Materials are only randomized within semantically similar classes, which
ensures objects still look and behave like the class they represent. For instance, an apple will not swap
materials with an orange. Figure A.21b shows some examples of randomizing the materials in the scene.

A.0.9 Object States

We randomize object states to expose the agent to more diverse objects during training. For instance,
instead of always having an open laptop or a clean bed, we randomize the openness of each laptop and if
each bed is clean or dirty. Figure A.22 shows some examples. Our current set of state randomizations
include:
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(a) Examples of color randomization for a vase object. The original color is shown on the left. Notice that the vase
still looks realistic with many possible colors.

(b) Examples of material randomization in ProcTHOR. Notice that only the objects randomize in materials, where the
walls, floor, and ceiling remain the same.

Figure A.21: Examples of color randomization and material randomization in ProcTHOR.

* Toggling objects. Floor lamp and desk lamp object types have their state toggled on or off.
* Cleaning or dirtying objects. Bed object types may appear as either clean or dirty.

* Opening or closing objects. Box and laptop object types may

toggling objects on or off (for floor lamp and desk lamp object types), setting objects to clean or dirty (for
bed object types), and openness randomizations (for box and laptop object types).

A.0.10 Validator

Once a house is generated, we use a validator to make sure that the agent can successfully navigate to
each room in the house, without modifying the scene through interaction (e.g. moving an object out of the
way). Specifically, we first make sure the agent can teleport to a location inside the house. Then, from
that position, we perform a BFS over neighboring positions on a 0.25 x 0.25 meter grid to obtain all
reachable positions from the agent’s current position. The validator checks to make sure that every room
in the house has at least 5 reachable positions on the grid. If the validator fails, we resample a new house
using the same room spec, so as to not change the distribution of room specs that we sample from.

A.0.11 Related Works

In this work, our goal is to generate diverse and semantically plausible houses. We also aimed to make
it easily extendable in the future, adapting to new object types or synthesizing new room types. To this
end, we tried to use the best approaches or build on existing works that are insufficient for our use case.
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(a) Openness state randomness example with a laptop.

(b) Clean state randomness example with a bed.

(c) On or off state randomness with a floor lamp.

Figure A.22: Examples of object state randomness.

78
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Given the modular nature of our house generation process, if a better algorithm exists at any stage of the
pipeline, we can easily update the generation process with that algorithm to generate better houses.

Floorplan Generation. Floorplan generation involves taking a set of rooms to place in a house and an
interior boundary (i.e., a top-down outline of the home) and partitioning the interior boundary into rooms.
Floorplan generation is a longstanding problem, with many works generating floorplans with procedural
generation [146, 11, 209, 70, 153] and deep learning [172, 173, 96, 260]. Our Floorplan generation
algorithm is based on [146, 153], which generates a floorplan from a room specification, connectivity
constraints between rooms, and an interior boundary. [209] is similar to [146], except that it tries to learn
the approximate size of room types from data rather than manually specifying the relative sizes of each
room. [96] proposes a similar approach that tries to generate a floorplan based on room preferences,
room connectivity constraints, and an interior boundary, but it trains a network on RPLAN [260] to solve
these constraints. [172, 173, 260] train a network to generate floorplans, but it does not support inputting
any preferences about the number of rooms or the types of rooms in the house. However, in contrast
to [146], such work cannot generate arbitrary floorplans that are out of the training distribution, which is
problematic if one wanted to generate new types of rooms, such as garages and stairways connecting to
another floor [70], or generate massive multi-family floorplans. We also sample an interior boundary for
each new house to generate more diverse floorplans.

Object Placement. Object placement involves selecting which objects from a given object database
should appear in the house and arranging those objects in a plausible configuration within the rooms of a
home (e.g. chairs near tables, paintings on walls, toilets in bathrooms). We built a 3-stage pipeline for
placing objects, which (1) places objects on floors, (2) places objects on walls, and (3) places objects on
the surface of other objects. Our approach requires specifying remarkably few constraints about how
objects are placed in scenes, making it easily extendable to add new objects to our object database and
generate new room types.

Many works studying object placement [158, 83, 279, 276, 112, 253, 68, 23, 24, 95, 150] relied on
procedural generation. [158, 276, 112, 253] take a given set of objects and the outline of the room but
iteratively optimize over several functions to try and minimize the cost function. The cost function
determines how realistic the room is with respect to quantities such as how navigable it is and how far
an object is from a wall. [279] uses a similar object placement algorithm to ours based on hierarchical
relationships between objects. It tries to learn these relationships from 3D-Front [71], whereas we specify
constraints and SAGs for objects, such as which can be placed on walls and which objects may appear
near each other. In [68], the authors take examples of object arrangements and generate similar ones using
probabilistic models trained on 130 scenes. [83] introduces the idea of anchoring objects in parent-child
relationships. For instance, objects may be anchored to a wall or on top of a surface such as a table.
[23, 24, 95, 150, 20] take in text descriptions or graphs [148] of a furniture arrangement as input and
attempt to place objects based on that. However, this work requires manually prompting the model for
each new room one wants to generate, so it similarly does not scale well.

Some recent works have proposed using deep learning to place objects on the floors of rooms [245, 248,
183, 205, 280, 30, 71, 139, 179]. The main factors limiting our use of such models are that they: (1)
cannot be easily adapted to place novel objects and room types and (2) the lack of high-quality training
data of objects placed in 3D scenes. For training data, [245, 248, 205, 280, 139] uses SUNCG [226], a
dataset that has been taken down due to legal issues, and [183, 30, 71, 179] uses 3D-Front. However,
these approaches do not work with novel objects outside their training dataset and cannot generate novel
room types that are not seen during training. Thus, it is impractical to use such approaches in ProcTHOR
out of the box, as we have differing object databases. It is also impractical (and undesirable) to reproduce
such approaches with our object database since we do not have large amounts of training data specifying
examples of how our objects are placed in scenes. Here, even if we had such annotations, it would not
allow us to add new objects to our object database in the future, as it would require manually collecting
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many new examples of where each is placed in scenes to train such models properly. Finally, note that
kitchens and bathrooms are not diversely furnished in 3D-Front, so trying to learn object placement in
such rooms is impractical.

The approach we use to place objects on surfaces is similar to that of [24, 83], where we calculate the
co-object occurrence prior to determine which objects to place on a surface. For example, when looking
at which objects to place on a dining table, then the co-object occurrence of a plate is much higher than
that of a baseball bat. [113] proposes a fascinating approach to learning co-object occurrences using
LLMs [55, 16, 278, 197]. It computes the probability of prompts such as “plate on table” or “baseball
bat on table” to compute the relative probabilities of such pairwise combinations. In [68], they propose
surface object placement by training probabilistic models that learn to cluster similar objects together as a
way to scale much better to new object types. For example, they might input a cluttered desk with a chair,
generating many new arrangements of a cluttered desk with new objects on the surface. [249, 69] have
done randomizations of objects on surfaces without any priors about which objects should appear on a
given surface.

We use semantic asset groups (SAGs) to place co-occurring objects next to each other. We define SAGs
in an interactive web environment from top-down images of groups of objects. SAGs are most similar
to object arrangements generated from Sketch2Scene [270], which takes an artistic sketch of a scene as
input and generates plausible object configurations from that sketch. However, creating the sketches can
be incredibly time-consuming, and sampling from them results in a leaky abstraction. In [276, 112, 253],
the authors try to place select objects near each other by optimizing a pairwise distance constraint. Here,
the cost function is set to minimize the distance between objects, such as chairs and a table, until they are
sufficiently close. The relationships between the objects are manually defined at the object type level.
SAGs are also similarly related to the idea of hyper relations in [83]. Instead of using positional anchoring,
it uses density-based clustering to attempt to sample how objects are anchored around a parent object
[206]. In addition, instead of manually defining the hyper-relations, they attempt to extract them from
3D-Front.

A.0.12 Limitations and Future Work

ProcTHOR-10K only generates 1-floor houses. We plan to support multi-floor houses in ProcTHOR-v2.0.
This will allow us to capture a wider range of houses and provide better fine-tuning results. Additionally,
we plan to scale up our asset databases by leveraging many open-source 3D asset databases, such as
ABO [43], PartNet [165], ShapeNet [22], Google Scanned Objects [56], 3D-Future [73], and CO3D [204],
among others.

ProcTHOR opens up many avenues of future research in scene synthesis targeted at training embodied
agents. Along these lines, better leveraging real-world data as a prior, similar to what is done in Meta-
Sim [114], is a promising direction. Similarly, using curriculum learning [176, 171] to train agents in
environments that progressively get harder [2] may help train better and faster agents.
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A.1 PROCTHOR Datasheet

Motivation

For what purpose was the dataset cre-
ated?

The dataset was created to enable the training of simulated
embodied agents in substantially more diverse environments.

Who created and funded the dataset?

This work was created and funded by the PRIOR team at Allen
Institute for Al See the contributions section for specific details.

Composition

What do the instances that comprise
the dataset represent?

Each house is specified as a JSON file, which specifies how to
populate a 3D Unity scene in AI2-THOR.

How many instances are there in total
(of each type, if appropriate)?

There are 10K houses released in the dataset, along with the
code to sample substantially more. Section 4 shows the distri-
bution of houses in PROCTHOR-10K.

Does the dataset contain all possible
instances or is it a sample (not nec-
essarily random) of instances from a
larger set?

We make 10K houses available, but more houses can easily be
sampled with the procedural generation scripts.

What data does each instance consist
of?

Each house is specified as a JSON file, which precisely de-
scribes how our AI2-THOR build should create the house. The
procedurally generated JSON files are typically several thou-
sand lines long.

Is there a label or target associated | No.
with each instance?
Is any information missing from in- | No.

dividual instances?

Are relationships between individual
instances made explicit (e.g., users’
movie ratings, social network links)?

Each house is generated independently, meaning there are no
relationships between the houses.

Are there recommended data splits?

Yes. See Appendix A.0.7.

Are there any errors, sources of noise,
or redundancies in the dataset?

No.

Is the dataset self-contained, or does
it link to or otherwise rely on exter-
nal resources (e.g., websites, tweets,
other datasets)?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.
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Does the dataset contain data that, if
viewed directly, might be offensive,
insulting, threatening, or might oth-
erwise cause anxiety?

No.

Collection Process

How was the data associated with
each instance acquired?

Each house was procedurally generated. See Appendix ??.

If the dataset is a sample from a
larger set, what was the sampling
strategy?

The dataset consists of 1 million houses sampled from the
procedural generation scripts.

Who was involved in the data collec-
tion process?

The authors were the only people involved in constructing the
dataset.

Over what timeframe was the data
collected?

Data was collected between the end of 2021 and the beginning
of 2022.

Were any ethical review processes
conducted?

No.

Preprocessing/Cleaning/Labeling

Was any preprocess-
ing/cleaning/labeling of the data
done?

Section A.0.7 describes the labeling that was done to make the
assets spawn in realistic places.

We have also gone through every asset in the asset database
to make sure the pivots for each asset are facing a consistent
direction.

Was the “raw” data saved in addition
to the preprocessed/cleaned/labeled
data?

There is no raw data associated with the house JSON files.

Is the software that was used to
preprocess/clean/label the data avail-
able?

The code to generate the houses is made available.

Uses

Has the dataset been used for any
tasks already?

Yes. See the Experiments section of the paper.
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‘What (other) tasks could the dataset
be used for?

The houses can be used in a wide variety of interactive tasks in
embodied Al and computer vision.

Any task that can be performed in AI2-THOR can be performed
in ProcTHOR. For instance, in embodied Al, the houses may be
used for navigation [117, 185, 257, 282, 254, 275, 149, 281],
multi-agent interaction [102, 103, 2], rearrangement and inter-
action [249, 74, 79, 37, 228], manipulation [60, 174, 59, 263],
Sim2Real transfer [50, 111, 130], embodied vision-and-
language [224, 177, 97, 129, 85, 115], audio-visual navigation
[34, 78, 33], and virtual reality interaction [258, 169, 93],
among others.

In the broader field of computer vision, the dataset may be used
to study object detection [128]; NeRFs [161, 236, 86, 140];
segmentation, depth, and optimal flow estimation [67, 86];
generative modeling [120, 124, 123]; occlusion reasoning [62];
and pose estimation [29], among others.

Our framework for loading in procedurally generated houses
from a JSON spec also enables the study of scene clutter genera-
tion, building more realistic procedurally generated homes, and
the development of synthetically generated spaces to train em-
bodied agents in factories [170], offices, grocery stores [154],
and full procedurally generated cities.

Is there anything about the com-
position of the dataset or the
way it was collected and prepro-
cessed/cleaned/labeled that might im-
pact future uses?

No.

Are there tasks for which the dataset
should not be used?

Our dataset may be used for both commercial and non-
commercial purposes.

Distribution

Will the dataset be distributed to third
parties outside of the entity on behalf
of which the dataset was created?

Yes. We plan to make the entirety of the work open-source,
including the code used to generate and load houses, the initial
static dataset of 1 million procedurally generated house JSON
files, and the asset and material databases.

How will the dataset be distributed?

The static house JSON files will be distributed with the PRIOR
Python package [51].

The code, asset, and material databases will be distributed on
GitHub.

Will the dataset be distributed under
a copyright or other intellectual prop-
erty (IP) license, and/or under appli-
cable terms of use (ToU)?

The house dataset, 3D asset database, and generation code will
be released under the Apache 2.0 license.
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Have any third parties imposed IP-
based or other restrictions on the data
associated with the instances?

84

No.

Do any export controls or other regu-
latory restrictions apply to the dataset
or to individual instances?

Maintenance

Who will be support-
ing/hosting/maintaining the dataset?

The authors will be providing support, hosting, and maintaining
the dataset.

How can the owner/curator/manager
of the dataset be contacted?

For inquiries, email <mattd @allenai.org>.

Is there an erratum?

We will use GitHub issues to track issues with the dataset.

Will the dataset be updated?

We expect to continue adding support for new features to con-
tinue to make procedurally generated houses even more diverse
and realistic. We also intend to support new tasks in the future.

If the dataset relates to people, are
there applicable limits on the reten-
tion of the data associated with the
instances (e.g., were the individuals
in question told that their data would
be retained for a fixed period of time
and then deleted)?

The dataset does not relate to people.

Will older versions of the | Yes. Revision history will be available for older versions of the
dataset continue to be sup- | dataset.

ported/hosted/maintained?

If others want to ex- | Yes. The work will be open-sourced and we intend to provide

tend/augment/build on/contribute to
the dataset, is there a mechanism for
them to do so?

support to help others use and build upon the dataset.

Table A.1: A datasheet [81] for PROCTHOR and PROCTHOR-10K.
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A.2 ARCHITECTHOR
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Figure A.23: Top-down images of the 5 custom-built interactive validation houses in ARCHITECTHOR.
The goal of these houses is to evaluate interactive agents in more realistic and larger home environments.
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A.2.1 Datasheet

Motivation

For what purpose was the dataset cre-
ated?

ARCHITECTHOR was created to enable the evaluation of em-
bodied agents in large, realistic, and interactive household envi-
ronments.

Who created and funded the dataset?

This work was created and funded by the PRIOR team at Allen
Institute for Al See the contributions section for specific details.

Composition

What do the instances that comprise
the dataset represent?

Instances of the dataset comprise interactive 3D houses that
were built in Unity and can be used with our custom build of
the AI2-THOR API.

How many instances are there in total
(of each type, if appropriate)?

There are 10 total houses, comprising 5 validation houses and 5
testing houses.

Does the dataset contain all possible
instances or is it a sample (not nec-
essarily random) of instances from a
larger set?

The dataset is self-contained.

What data does each instance consist
of?

Each instance of a house is a Unity scene, which includes data
such as the placement of objects, lighting, and texturing.

Is there a label or target associated
with each instance?

No.

Is any information missing from in-
dividual instances?

No.

Are relationships between individual
instances made explicit (e.g., users’
movie ratings, social network links)?

Each house was independently created.

Are there recommended data splits?

Yes. The houses themselves are partitioned as 5 validation
houses and 5 testing houses. The assets placed in the house
follow the same train/val/test splits used in PROCTHOR-10K.

Are there any errors, sources of noise,
or redundancies in the dataset?

No.

Is the dataset self-contained, or does
it link to or otherwise rely on exter-
nal resources (e.g., websites, tweets,
other datasets)?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.
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Does the dataset contain data that, if
viewed directly, might be offensive,
insulting, threatening, or might oth-
erwise cause anxiety?

No.

Collection Process

How was the data associated with
each instance acquired?

Each house was professionally hand-modeled by 3D artists.
Most objects placed in the hosues come from the PROCTHOR
asset database. However, countertops, showers, and many cabi-
nets were custom built.

If the dataset is a sample from a
larger set, what was the sampling
strategy?

The dataset consists of 1 million houses sampled from the
procedural generation scripts.

Over what timeframe was the data
collected?

The houses were built towards the beginning of 2022.

Were any ethical review processes
conducted?

No.

Preprocessing/Cleaning/Labeling

Was any preprocess-
ing/cleaning/labeling of the data
done?

No.

Was the “raw” data saved in addition
to the preprocessed/cleaned/labeled
data?

There is no raw data associated with the ARCHITECTHOR
houses.

Is the software that was used to
preprocess/clean/label the data avail-
able?

Yes. We will open-source the ARCHITECTHOR houses and
they can be opened and viewed in Unity.

Uses

Has the dataset been used for any
tasks already?

Yes. Please see the Experiments section of the paper.

What (other) tasks could the dataset
be used for?

The tasks can be used for any type of navigation and interaction
tasks in embodied Al. The houses are built into our build of
AI2-THOR, meaning ARCHITECTHOR can work with any
task that can be performed in AI2-THOR.

We especially think ARCHITECTHOR will be useful as an eval-
uation suite for evaluating different sets of PROCTHOR tasks
and evaluating agents trained on different sets of procedurally
generated houses.
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Is there anything about the com-
position of the dataset or the
way it was collected and prepro-
cessed/cleaned/labeled that might im-
pact future uses?

No.

Are there tasks for which the dataset
should not be used?

Our dataset may be used for both commercial and non-
commercial purposes.

Distribution

Will the dataset be distributed to third
parties outside of the entity on behalf
of which the dataset was created?

Yes. All houses in ARCHITECTHOR will be released to the
open-source community and available through our build of the
AI2-THOR Python API.

How will the dataset be distributed?

The houses will be distributed on GitHub and available to open
as Unity scenes.

Will the dataset be distributed under
a copyright or other intellectual prop-
erty (IP) license, and/or under appli-
cable terms of use (ToU)?

ARCHITECTHOR will be released under the Apache 2.0 li-
cense.

Have any third parties imposed IP-
based or other restrictions on the data
associated with the instances?

No.

Do any export controls or other regu-
latory restrictions apply to the dataset
or to individual instances?

Maintenance

Who will be support-
ing/hosting/maintaining the dataset?

The authors will be providing support, hosting, and maintaining
the dataset.

Is there an erratum?

We will use GitHub issues to track issues with the dataset once
it is published.

Will the dataset be updated?

ARCHITECTHOR is currently in maintenance mode and we do
not expect it to update much from its current state. However,
we plan to actively support future AI2-THOR functionalities
in ARCHITECTHOR, such as support for new robots, more
advanced interaction capabilities, and bug fixes.

If the dataset relates to people, are
there applicable limits on the reten-
tion of the data associated with the
instances (e.g., were the individuals
in question told that their data would
be retained for a fixed period of time
and then deleted)?

The dataset does not relate to people.
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Will older versions of the | Yes. Revision history will be available in the GitHub repository.
dataset continue to be sup-
ported/hosted/maintained?

If  others want to ex- | Yes. The work will be open-sourced and we intend to provide
tend/augment/build on/contribute to | support to help others use and build upon the dataset.

the dataset, is there a mechanism for
them to do so?

Table A.2: A datasheet [81] for the artist-designed ARCHITECTHOR houses.

A.2.2 Analysis

ARCHITECTHOR consists of 10 remarkably high-quality large interactive 3D houses. Figure A.23 shows
top-down images of the 5 validation houses. Figure A.24 shows some examples of images taken inside of
2 kitchens and a bedroom from ARCHITECTHOR validation.

Figure A.24: Examples of images inside of 2 hand-modeled kitchens and 1 hand-modeled bathroom from
ARCHITECTHOR validation.

ARCHITECTHOR was built to be much larger than AI2-iTHOR and RoboTHOR. Figure A.25 shows
the size comparisons between comparable hand-built scene datasets in AI2-iTHOR and RoboTHOR,
measured in navigable area. Notice that the navigable area in ARCHITECTHOR is substantially larger
than in those. The figure also shows the navigable areas in PROCTHOR-10K span the spectrum of
navigable areas between AI2-iTHOR, RoboTHOR, and ARCHITECTHOR.

In total, the creation of the 10 houses in ARCHITECTHOR took approximately 320 hours of cumulative
work by professional 3D artists. Figure A.26 shows the time breakdown of which parts of the process
took the longest. In particular, the creation of custom assets for the kitchen, such as modeling each of
the countertops and cabinets, took the longest amount of time, followed by modeling the 3D structure of
house.
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Figure A.25: Box plots of the navigable areas for ARCHITECTHOR compared to AI2-iTHOR,
RoboTHOR, and PROCTHOR-10K. Validation scenes were used to calculate the data for
ARCHITECTHOR, and training scenes were used to calculate the data for AI2-iTHOR, RoboTHOR, and
PROCTHOR-10K.
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Figure A.26: Cumulative time breakdown of the development of ARCHITECTHOR across 3D artists.

A.3 Input Modalities
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A.4 Experiment details

This section discusses the training details used for our experiments. We discuss baselines, PROCTHOR
pre-training, and environment-specific fine-tuning details for the tasks of ObjectNav, ArmPointNav, and
rearrangement.

A.4.1 ObjectNav experiments

For ObjectNav experiments, agents are given a target object type (e.g. a bed) and are tasked with finding a
path in the environment that navigates to that target object type. The task setup matches what is commonly
used in embodied AI [50, 13, 117, 203], although we only utilize forward-facing egocentric RGB images
at each time step. All ObjectNav experiments are trained with a simulated LoCoBot (Low Cost Robot)
agent [19]. The task and training details are described below.

Evaluation. Following [8], an ObjectNav task is considered successful if all of the following conditions
are met:

1. The agent terminates the episode by issuing the DONE action.
2. The target object type is within a distance of 1 meter from the agent’s camera.

3. The object is visible in the final frame from the agent’s camera. For instance, if (1) and (2) are
satisfied, and the agent is looking in the direction of the object, but the target object is occluded
behind a wall, then the task is unsuccessful. Similarly, if the target object type is located in the
opposite direction of where the agent is looking, then the task will be unsuccessful.

We also use SPL to evaluate the efficiency of the agent’s trajectory to the target object. SPL is defined and
discussed in [8, 13]. A house may have multiple instances of objects for a given type that the agent can
successfully reach. For instance, a house may have multiple bedrooms, where each bedroom includes
a bed. Here, if the agent navigates to any of the beds, the episode is successful. To calculate SPL in
these scenarios, the shortest path length for the task is the minimum shortest path length from the starting
position of the agent to any of the reachable target objects of the given type, regardless of which instance
the agent navigates towards.

Actions. For each of the trained models, we use a discrete action space consisting of 6 actions, which is
shown in Table A.3. Following common practice [50, 111], we use stochastic actuation to better simulate
noise in the real world.

Model. We use the relatively simple EmbCLIP [117] training setup for training all ObjectNav ex-
periments. Table A.4 shows the hyperparameters used during training, which are adapted from [117].
Except for the “ProcTHOR+Large” model trained for HM3D (described below), we otherwise use the
same model architecture across ObjectNav experiments. Namely, at each time step, the agent receives
a3 x 224 x 224 egocentric RGB image from its camera. The image is processed with a frozen RN50
CLIP-ResNet visual encoder [196] to produce a 2048 x 7 x 7 visual embedding, V. The embedding is
compressed through a 2-layer CNN (going from 2048 to 128 to 32 channels) with 1 x 1 convolutions
[232] to obtain a 32 x 7 X 7 tensor, V7.

The target object type is represented as an integer in {0, 1, ..., 7T}, where T is the number of target object
types used during training. We use an embedding of ¢ to obtain a 32-dimensional vector. The vector is
resized to be a 32 x 1 x 1 tensor. The tensor is then expanded to be of size 32 x 7 x 7, to form our goal
target object type embedding G, where the 32 x 1 x 1 tensor is copied 7 x 7 times.
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Action Description

MOVEAHEAD Attempts to move the agent forward by §,, ~ N(u = 0.25,0 = 0.01)
meters from its current facing direction. If moving the agent forward by
0., meters results in a collision in the scene (e.g. there is a wall directly
in-front of the agent within §,,, meters), the action fails and the agent’s

position remains unchanged.

ROTATERIGHT Rotates the agent rightwards or leftwards from its current forward facing
ROTATELEFT direction by &, ~ N (u = 30,0 = 0.5) degrees.

LookUp Tilts the agent’s camera up or down by 30 degrees.

LookDOwWN

DONE A signal from the agent to terminate the episode and evaluate the trajectory

from its current state. Discussed in [8].

Table A.3: The action space for ObjectNav experiments.

We concatenate V} and G to form a 64 x 7 x 7 tensor, which is compressed with a 2-layer CNN to
form a 32 x 7 x 7 tensor, Z;. The tensor Z is flattened to form a 1568 dimensional vector, z,. Following
[174], we use an embedding of the previous action, represented as an integer in {0, 1, ..., 5}, to obtain a
6 dimensional vector a;_1. We concatenate z; and a;_; to form a 1574 dimensional vector x;. The vector
x; is passed through a 1-layer GRU [39, 41] with a hidden belief state b;_1, of size 512, to obtain by.

Using an actor-critic formulation, the 512-dimensional belief state b, is passed through a 1-linear layer,
representing the actor, to get a 6-dimensional vector, where each entry represents an action. The 6-
dimensional vector is passed through a softmax function to obtain the agent’s policy 7 (i.e. the probability
distribution over the action space). We sample from 7 to choose the next action. We also pass the belief
state b; through a separate 1-linear layer, representing the critic to obtain the scalar v, estimating the
value of the current state.

The “ProcTHOR+Large” is similar to the above except we: (1) use the larger RN50x16 CLIP-ResNet
model, (2) use a 1024-dimensional hidden belief state in our GRU, and (3) input images to the model at a
512x 384 resolution.

Table A.4: Training hyperparameters for ObjectNav experiments.

Hyperparameter Value
Discount factor (vy) 0.99
GAE parameter () 0.95
Value loss coefficient 0.5
Entropy loss coefficient 0.01
Clip parameter (¢) 0.1
Rollout timesteps 20
Rollouts per minibatch 1
Learning rate 3e-4
Optimizer Adam [121]
Gradient clip norm 0.5
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Training. Each agent is trained using DD-PPO [219, 254], using a clip parameter € = 0.1, an entropy
loss coefficient of 0.01, and a value loss coefficient of 0.5. Agents are trained to maximize the cumulative
discounted rewards Zfl: 0" - ¢, where we set the discount factor 7 to 0.99 and the episode’s horizon H
to 500 steps. We also employ GAE [218] parameterized by A = 0.95.

Reward. The reward function follows that of [117]. Specifically, at each time step, it is calculated as
r = max(0, min Ag.s—1 — Ay) + 8¢ — p, where:

* min Ag,;_1 is the minimum L2 distance from the agent to any of the reachable instances of the target
object type that the agent has observed over steps {0,1,...,¢t — 1}.

* A, is the current L2 distance from the agent to the nearest reachable instance of the target object
type.

* s, is the reward for successfully completing the episode. If the agent takes the DONE action and the
episode is deemed successful, then s; is 10. Otherwise, it is 0.

* pis the step penalty that encourages the agent to finish the episode quickly. It is set to 0.01.

ProcTHOR pre-training. We pre-train our ObjectNav agents on the full set of 10k training houses in
PROCTHOR-10K.' We pre-train with all T = 16 target object types, which are shown in Table A.5. The
agent is trained for 423 million steps, although by 200 million steps, the agent has reached 90% of its
peak performance. We used multi-node training to train on 3 AWS g4dn.12xlarge machines, which takes
approximately 5 days to complete.

Object Type  RoboTHOR HM3D-Semantics AI2-iTHOR ARCHITECTHOR

Alarm Clock

Apple

Baseball Bat
Basketball

Bed X
Bowl

Chair X
Garbage Can X
House Plant

X X X X

X

Laptop X
Mug X
Sofa X

Spray Bottle X
Television

Toilet X

Vase X

Table A.5: The target objects that are used for each ObjectNav task.

'When training the “ProcTHOR+Large” model used in the HM3D challenge, we use a modified set of 10K houses,
see below for details.
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Sampling target object types. To sample the target object type for a given episode, we restrict ourselves to
only sampling target object types that have a possibility of leading to a successful episode. For instance,
even if there is an object like an apple in the scene, it might be located in the fridge, and so if it was used
as a target object, the agent would never succeed because the object would never appear visible in the
frame (without any manipulation actions). Therefore, we impose a constraint that the target object must
be visible without any form of manipulation.

For each house, we use an approximation to determine the set of target object instances that the agent can
successfully reach, without any manipulation. Specifically, we start by teleporting the agent into the house,
and then perform a BFS over a 0.25 x 0.25 meter grid to obtain the reachable positions in the scene. A
position is considered reachable if teleporting to it would not cause any collisions with any other objects,
and the agent is successfully placed on the floor. Then, for each candidate instance of every target object
type, we look at the nearest 6 reachable agent positions (x(a), z(“)> to the candidate object instance’s
center position. For each reachable agent position, we perform a raycast from the agent’s camera height
y(®) to up to 6 random visibility points on the object <x("), y(©), z(")>. Each object is annotated with
visibility points, which are used as a fast approximation to determine if an object is visible with just
using a few raycasts, instead of using full segmentation masks. If any of the raycasts from the agent’s
reachable position to the object’s visibility point do not have any collisions with other objects (e.g. the
raycast does not collide with the outside of the fridge), and the L2 distance between (2(%), 3(®), 2(°)) and
(z(®) () 2(2)) is less than 1 meter, then the object instance is considered successfully reachable by the
agent.

To choose a target object type, we use an e-greedy sampling method. Specifically, with a probability
of ¢ = 0.2, we randomly sample a target object type that has at least 1 reachable object instance in a
given house. With a probability of 1 — ¢, the target object type is the target object type that has been
most infrequently sampled in the training process. Since some objects appear much more frequently than
others (e.g. beds appear in many more houses than baseball bats), sampling based on the least commonly
sampled target object types allows us to maintain a more uniform distribution of sampled target object

types.

RoboTHOR. RoboTHOR is evaluated in both a 0-shot and fine-tuned setting. For 0-shot, we take the
pre-trained model on PROCTHOR-10K and run it on the RoboTHOR evaluation tasks. For fine-tuning,
we reduce 7' to the 12 RoboTHOR target object types, shown in Table A.5 and train on the 60 provided
training scenes. We fine-tune for 29 million steps, before validation performance starts to go down, on a
machine with 8 NVIDIA Quadro RTX 8000 GPUs. Fine-tuning took about 7 hours to complete.

HM3D-Semantics. We evaluate on HM3D-Semantics in both a O-shot and fine-tuned setting using the
“ProcTHOR” and “ProcTHOR+Large” architectures described above, these two architectures have slightly
different pretraining strategies.

“ProcTHOR” model. For 0-shot, we take the pre-trained model on PROCTHOR-10K, and run it on
the HM3D-Semantics evaluation tasks. For fine-tuning, we reduce T to the 6 target object types used
in HM3D-Semantics (see Table A.5) and train on the 80 provided training houses. We use an early
checkpoint from PROCTHOR pre-training, specifically from after 220 million steps. We performed
fine-tuning on a machine with 8 NVIDIA RTX A6000 GPUs for approximately 220M steps, which took
about 43 hours to complete.

“ProcTHOR+Large” model. We pre-train this model using PROCTHORLARGE-10K a variant of
PROCTHOR-10K with houses sampled to better align to the distribution of houses in HM3D. In par-
ticular, PROCTHORLARGE-10K contains 10K procedurally generated houses each of which contains
between 4 and 10 rooms (houses in PROCTHORLARGE-10K thus tend to be much larger than houses
in PROCTHOR-10K). Moreover, during pretraining we only train our agent to navigate to the 6 object
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categories used in HM3D-Semantics. Fine-tuning is done identically as above. We use an early checkpoint
from PROCTHOR pre-training, specifically from after 125 million steps. We performed fine-tuning on a
machine with 8 NVIDIA RTX A6000 GPUs for approximately 185M steps taking 85 hours to complete.

AI2-iTHOR. Similar to RoboTHOR and HM3D-Semantics, we use AI2-iTHOR for both 0-shot and
fine-tuning. For 0-shot, we take the pre-trained model on PROCTHOR-10K, and run it on the AI2-iTHOR
evaluation tasks. Since the AI2-iTHOR evaluation tasks use the full set of target objects used during
PROCTHOR pre-training, we do not need to update 7". For fine-tuning, we use a machine with 8§ TITAN
V GPUs. We fine-tune for approximately 2 million steps before validation performance starts to go down,
which takes about 1.5 hours to complete.

ArchitecTHOR. Since ARCHITECTHOR does not include any training scenes, we only use it for
evaluation of the PROCTHOR pre-trained model. As shown in Table A.5, ARCHITECTHOR evaluation
uses the full-set of target object types that are used during PROCTHOR pre-training.

A.4.2 ArmPointNav experiments

In ArmPointNav, we followed the same architecture as [60]. The task is to move a target object from a
starting location to a goal location using the relative location of the target in the agent’s coordinate frame.
The visual input is encoded using 3 convolutional layers followed by a linear layer to obtain a 512 feature
vector. The 3D relative coordinates, specifying the targets, are embedded using three linear layers to a
512 embedding which combined with the visual encoding is input to the GRU. The agent is allowed to
take up to 200 steps or the episode will automatically fail.

Hyperparameter Value
Learning rate 3e-4
Gradient steps 128
Discount factor () 0.99
GAE parameter () 0.95
Gradient clip norm 0.5
Rotation Degrees 45
Step penalty -0.01
Number of RNN Layers 1
Rollouts per minibatch 1
Optimizer Adam [121]

Table A.6: Training hyperparameters for ArmPointNav experiments.

ProcTHOR pre-training. We pre-train our model on a subset of 7000 houses, on 58 object categories.
For each episode, we move the agent to a random location, randomly choose an object in the room that is
pickupable, and randomly select a target location. We train our model for 100M frames, running on 4
AWS g4dn.12xlarge machines. Running on a total of 16 GPUs and 192 CPU cores took 3 days of training.
Table A.6 shows the hyperparameters used for pre-training.

AI2-iTHOR evaluation. We evaluate our model on 20 test rooms of AI2-THOR (5 kitchens, 5 living
rooms, 5 bedrooms, 5 bathrooms), on a subset of 28 object categories for a total of 528 tasks. We
attempted to perform fine-tuning on AI2-iTHOR, but none of the fine-tuning models performed better
than the zero-shot model trained with PROCTHOR pre-training.
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A.4.3 Rearrangement experiments

Following [249, 117], we use imitation learning (IL) to train all models for the 1-phase modality of the
task. We divide the full training of the final model into two stages: pre-training in PROCTHOR and
fine-tuning in AI2-iTHOR.

Hyperparameter Value
Rollout timesteps 64

Batch size 7,680
Learning rate 7.4-1074
Optimizer Adam [121]
Gradient clip norm 0.5

BCY=1 steps 200,000
DAgger steps 2,000,000

Table A.7: ProcTHOR pre-training hyperparameters for Rearrange experiments.

ProcTHOR pre-training. We pre-train our model on a subset of 2,500 one and two-room PROCTHOR-
10K houses where a number of 1 to 5 objects are shuffled from their target poses in each episode, including
two shuffle modalities: different openness degree (at most one object in an episode) and a different location
(up to five objects in an episode). For each house, 20 episodes are sampled such that all shuffled objects
are in the same room where the agent is initially spawned. We train with 2 - 10° steps of teacher forcing
and 2 million steps of dataset aggregation [208], followed by about 180 million steps of behavior cloning.
We use a small set of 200 episodes sampled from 20 validation houses unseen during training to select a
checkpoint to evaluate every 5 million steps.

Running on 6 AWS g4dn.12xlarge (totaling 24 GPUs and 288 virtual CPU cores), pre-training with 240
parallel simulations took 4 days. Table A.7 shows the hyperparameters used during pre-training.

AI2-iTHOR fine-tuning. We use the training dataset provided by [6] (4,000 episodes over 80 single-
room scenes), and a small subset of 200 episodes from the also provided full validation set to perform
model selection. We fine-tune for 3 million steps with 64-step long rollouts, 6 additional million steps
with 96-step long rollouts, and another 6 million steps with 128-step long rollouts.

Running on 8 Titan X GPUs and 56 virtual CPU cores, fine-tuning with 40 parallel simulations took 16
hours.

A.5 Performance Benchmark

To calculate the FPS performance benchmark shown in the Analysis section, we partitioned houses into
small houses (1-3 room houses) and large houses (7-10 room houses). For the navigation benchmark, we
perform move and rotate actions. For the interaction benchmark, we performing a pushing object action.
For querying the environment for data, we obtain a piece of metadata from the environment that is not
commonly provided at each time step (e.g. checking the dimensions of the agent). At each time step, we
render a single 3 x 224 x 224 RGB image from the agent’s egocentric perspective. Experiments were
conducted on a server with 8§ NVIDIA Quadro RTX 8000 GPUs. We employ 15 processes for the single
GPU tests and 120 processes for the 8 GPU tests, evenly divided across the GPUs. Table A.8 shows the
comparisons to AI2-iTHOR and RoboTHOR.
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Navigation FPS Isolated Interaction FPS Environment Query FPS

Compute AI2-iTHOR RoboTHOR AI2-iTHOR RoboTHOR AI2-iTHOR RoboTHOR
8 GPUs 5,779+189 9,195+294 5,4114+190 6,331+137 463,446+18,577  412,550+21,806
1 GPU 1,316419 1,648+11 1,4514+72 1,5394+5 169,09244,232 163,660+3,336
1 Process 180+9 340+26 14142 217+1 15,584+156 15,578+164

PROCTHOR-S PROCTHOR-L PROCTHOR-S PROCTHOR-L PROCTHOR-S PROCTHOR-L
8 GPUs 8,599+359 3,208+127 6,488+250 2,861+107 480,205+19,684  433,587+18,729
1 GPU 1,427+74 6,280+40 1,265+71 597+37 160,622+42,846 157,567 42,689
1 Process 240+69 115+19 180442 93+15 14,825+199 14,916+186

Table A.8: Comparing performance benchmarks in PROCTHOR to baselines in AI2-iTHOR and
RoboTHOR. FPS for navigation, interaction, and querying the environment for data. PROCTHOR-
S and PROCTHOR-L denotes small and large PROCTHOR houses, respectively.

A.6 Robustness

We ran ProcTHOR ObjectNav pre-training with 5 different random seeds for 100M steps and found that
the variance across seeds is quite small. This measurement was performed for our O-shot results on a set
of 1000 ObjectNav tasks divided evenly between unseen ProcTHOR validation homes, ArchitecTHOR
validation scenes, AI2-iTHOR validation scenes, and RoboTHOR validation scenes. Here, we obtained
similar performance across all run which had a train success of 67.87% =+ 2.89% and a val success of
45.3% + 1.2%.
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Figure A.27: Examples of image-based modalities available in ProcTHOR include RGB (top left), depth
(top right), instance segmentation (middle left), semantic segmentation (middle right), bounding box
annotations (bottom left), and surface normals (bottom right). More image modalities can be added by
modifying the Unity backend.
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Objaverse Appendix

B.1 Instance Segmentation with CP3D

Model. We use the Mask-RCNNJ[91] model of [5] with a ResNet-50 backbone[92]; no additional
changes to their model are made. Instead of a softmax activation, the model uses a Gumbel activation,
given by the formula 1(q) = exp(— exp(—q)), to transform logits into probabilities. More details about
the model and activation can be found in [5].

Training. We take the pretrained ResNet-50 Mask-RCNN checkpoint of [5] and finetune the model for
24 epochs with the CP3D augmentation integrated into the training pipeline. We use a batch size of 64
and a learning rate of 0.002.

Additional Results Here we report detection metrics in addition to the segmentation results reported in
the paper in Table B.1. Notably, we see an impressive gain of two points on AP for rare categories.

Method AP APr APc APf

GOL [5] 275 19.8 272 31.2
GOL +3DCP 289 21.8 28.7 32.2

Table B.1: Detection results for bounding box AP category metrics. APr, APc, and APf measure AP
for categories that are rare (appear in 1-10 images), common (appear in 11-100 images), and frequent
(appear in >100 images), respectively.

B.2 Open-Vocabulary ObjectNav

Model. The agent’s embodiment is a simulated LoCoBot [19]. The action space consists of six actions:
MOVEAHEAD, ROTATELEFT, ROTATERIGHT, END, LOOKUP, and LOOKDOWN. Given the excellent
exploration capabilities of EmbCLIP [118, 52], we opt to keep the same overall architecture, just replacing
the learned embedding for target types in prior work by a linear projection of the text branch output of
CLIP for the target description, as shown in Fig. B.1. Additionally, in order to provide more information
about the target and the current visual input, we increase the respective internal representations for each
modality from the original 32-D to 256-D. Note that our model does not employ the alternative zero-shot
design described in [118], where the target description is not observed by the agent’s RNN. Given the

100
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Figure B.1: Open-Vocabulary ObjNav Model overview. The ObjectNav model (employing an RNN)
uses the high-level architecture illustrated here, where it receives features from the visual and target object
description encoders, besides previous hidden units and actions as input, and outputs the next action.

scale of OBJAVERSE-LVIS, we can train agents with good generalization following a more standard
design.

Training. For training, we use ProcTHOR to procedurally generate 10,080 houses. Each house has up
to three rooms, entirely populated with OBJAVERSE-LVIS assets except for structural components like
doors and windows, which are inherited from ProcTHOR [52]. We sample targets corresponding to LVIS
categories for which a single instance is present in the scene, resulting in a total of 9,421 unique assets
corresponding to 262 categories targeted during training. Training uses DD-PPO [255] and is distributed
across 28 GPUs on 7 AWS g4dn.12xlarge machines, with each GPU hosting 360 houses and the subset of
OBJAVERSE-LVIS assets populating them. The training hyperparameters are identical to the ones in [52],
and the 262 training target categories are listed in Table B.2 and Table B.3, respectively.

Testing. For testing, we sample 150 episodes for each of 30 target categories, which are a subset of the
training target categories. The resulting 4,500 episodes are sampled from 151 procedural houses not seen
during training. The 30 testing target categories are listed in Table B.4. For the results provided in the
main paper, the agent is trained for just 18 million simulation steps, but the resulting policy already shows
reasonable performance given the variety of targets and scenes. Improved performance can be achieved
with extended training (e.g., after approx. 460 million steps, the success rate is 33.0%).
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Hyperparameter Value
Discount factor () 0.99

GAE parameter (\) 0.95

Value loss coefficient 0.5
Entropy loss coefficient 0.01

Clip parameter (€) 0.1
Rollout horizons 32,64, 128
Rollout timesteps 20
Rollouts per minibatch 1

Learning rate 3-1074
Optimizer Adam [121]
Gradient clip norm 0.5

Table B.2: Training hyperparameters for Open-Vocabulary ObjectNav.

Bible, Christmas tree, Rollerblade, alligator, ambulance, amplifier, arctic (type of shoe), armor,

banner, barbell, barrel, barrow, baseball bat, basketball, bat (animal), bath mat, beachball, bear, bed,
beetle, bench, beret, bicycle, binder, binoculars, bird, blackberry, bookcase, boot, bottle, bowling ball,
bullhorn, bunk bed, bus (vehicle), butterfly, cab (taxi), cabinet, canoe, cape, car (automobile), card,
cardigan, carnation, cart, cassette, cat, chair, chaise longue, chicken (animal), clothes hamper, coatrack,
coffee table, cone, convertible (automobile), cornice, cow, cowboy hat, crab (animal), crate, crossbar,
cube, cylinder, deck chair, deer, desk, dinghy, dirt bike, dog, dollhouse, doormat, dove, drawer, dresser,
duckling, dumbbell, dumpster, easel, elephant, elk, fan, ferret, file cabinet, fireplace, fireplug,

fishing rod, flag, flagpole, flamingo, flip-flop (sandal), flipper (footwear), foal, football (American),
footstool, forklift, frog, futon, garbage, gargoyle, giant panda, giraffe, golf club, golfcart, gondola (boat),
goose, gorilla, gravestone, grill, grizzly, grocery bag, guitar, handcart, hat, heater, hockey stick, hog,
horse, horse carriage, jeep, kayak, keg, kennel, kitchen table, kitten, knee pad, ladder, ladybug,

lamb (animal), lamp, lamppost, lawn mower, legging (clothing), lion, lizard, locker, log, loveseat,
machine gun, mailbox (at home), manhole, mascot, mast, milk can, minivan, monkey, mop, motor,

motor scooter, motor vehicle, motorcycle, mushroom, music stool, nut, ostrich, owl, pajamas,

parasail (sports), parka, penguin, person, pet, pew (church bench), piano, pickup truck, pinecone,
ping-pong ball, playpen, pole, polo shirt, pony, pool table, power shovel, propeller, pug-dog, pumpkin,
rabbit, radiator, raincoat, ram (animal), rat, recliner, refrigerator, rhinoceros, rifle, road map,

rocking chair, router (computer equipment), runner (carpet), saddle (on an animal), saddle blanket,
saddlebag, sandal (type of shoe), scarecrow, scarf, sculpture, seabird, shark, shepherd dog, shield, shirt,
shoe, sink, skateboard, ski parka, skullcap, snake, snowmobile, soccer ball, sock, sofa, sofa bed,

solar array, sparkler (fireworks), speaker (stero equipment), spear, spider, sportswear, statue (sculpture),
step stool, stepladder, stool, subwoofer, sugarcane (plant), suit (clothing), suitcase, sunhat, surfboard,
sweat pants, sweater, swimsuit, table, tape measure, tarp, telephone pole, television camera, tennis ball,
tennis racket, tights (clothing), toolbox, tote bag, towel, trailer truck, trampoline, trash can, tricycle,
trousers, truck, trunk, turtle, tux, underdrawers, vacuum cleaner, vending machine, vest, wagon wheel,
water ski, watering can, wet suit, wheel, window box (for plants), wok, wolf, and wooden leg.

Table B.3: Training target types for Open-Vocabulary ObjectNav.
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Christmas tree, bed, bench, blackberry, chair, chicken (animal), dog, easel, elk, fireplug, forklift, garbage,
gargoyle, guitar, mascot, motor, penguin, pony, pool table, radiator, rifle, scarf, sock,
speaker (stero equipment), sportswear, sweat pants, trash can, trunk, wet suit, and wheel.

Table B.4: Testing target types for Open-Vocabulary ObjectNav.

(a) Screenshot of OBJAVERSE-LVIS categorization
task. (b) Screenshot of relative diversity rating task.

Figure B.2: Data collection interfaces.

B.3 Composition

Human subjects data. A portion of the data included in OBJAVERSE is generated by human subjects
(i.e. crowdworkers recruited through Amazon’s Mechanical Turk platform) as outlined in Section 3 and
detailed below. The collection process has been reviewed and approved for release by an Institutional
Review Board.

Data collection interfaces. Human annotators were used to provide the category labels for
OBJAVERSE-LVIS as described in Section 3. This task was accomplished by first creating sets of
500 candidate objects for each LVIS category. These candidate sets included objects visually resembling
the target category (as ranked by the CLIP features of their thumbnail images), as well as instances
whose metadata contained terms with a high similarity to the target category (as ranked by their GloVe
vector similarity [184]). Candidate objects were shown to crowdworkers nine at a time, and they were
asked to mark objects that were members of the category, as shown in Figure B.2 a. In addition to the
visual reference for each object, annotators also had access to the object’s name and were encouraged to
use this when helpful. Human annotators were also used to rate the relative diversity of of 3D objects
generated by models trained using OBJAVERSE and ShapeNet. The user interface and instructions for
this task are shown in Figure B.2 b. Two sets of nine objects generated by each model were shown with
random left-right orientations, and workers were asked to choose the set exhibiting the greater variety in
appearance.
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B.4 Estimating Coverage

We use OpenAI’s CLIP ViT-B/32 model to estimate the categorical coverage of the objects in OBJAVERSE.
Specifically, for each object, we compute the CLIP image embedding from the thumbnail and the cosine
similarity between an text embedding of each WordNet entity [65]. The entity with the maximum cosine
similarity is then assigned as the object’s entity. The WordNet entities are textually encoded in the form,
“a {entity} is a {definition}”, which is loosely inspired by CuPL [191]. For instance, we might have “a bat
is a nocturnal mouselike mammal with forelimbs modified to form membranous wings and anatomical
adaptations for echolocation by which they navigate” or “a bat is a club used for hitting a ball in various
games”. Computing the nearest WordNet entity for each object gave us an estimated coverage of 20.8K
entities.
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Phone2Proc Appendix

C.1 Implementation Details

For all experiments, we use the same architectures and process from EmbCLIP [119] and adopt the
same hyperparameters as ProcTHOR [52]. The 3x224x224 RGB images are processed with a frozen
CLIP-ResNet-50 architecture [92, 195]. This visual embedding is compressed with a 2-layer CNN,
concatenated with a goal object type embedding, and compressed with a 2-layer CNN. This is flattened
and combined with an embedding of the previous action, then passed through a single-layer GRU [41]
policy with a hidden belief state of size 512. An actor and critic are used to generate the next action
probability distribution and current state value estimates, respectively. The agent’s next action is sampled
from the actor distribution.

The following updates from [52] are made for policy and goal encoder fine-tuning:

—

. Learning rate is lowered to 3e-5 (10x lower than that of ProcTHOR [52]).
2. A small penalty of -0.05 is assessed if the agent runs into objects.

3. If the agent is about to run into an object, it will randomly move and rotate in small increments
to coarsely emulate unmodeled and unintended physical environment interactions.

4. The neck actions are limited to looking 30° above and below the horizon, as on our physical
platforms.

5. The horizontal field of view for a fixed aspect ratio is randomized by episode (uniformly sampled
in 0.2° increments between 48° and 65°), and the vertical field of view/aspect ratio is modified
to more closely resemble the Intel RealSense D435.

We use multi-node training on 3 or 4 (depending on the environment size) AWS g4dn.12xlarge machines
with 16 processes per machine.

The Habitat baseline used in Table 1 is trained on the 80 HM3D [198] set training scenes used for the
2022 Habitat challenge [272] using 80 processes and 8 A100 GPUs. The model trained for 200M steps
and we used the model which achieved the best performance on a validation set of 200 episodes. It was
trained with the same updated field of view as every other model and baseline evaluated in this work.
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C.2 Failure Cases

The most common failure case for PHONE2PROC models was semantic confusion; that is, not being able
to recognize particular instances of objects or mistaking instances of other object categories for the target
object. For example, a couch with a cover on it in the 6-room apartment was mistaken for a bed several
times in the limited field of view of the agent and spare jugs for the water cooler in the cafeteria were
mistaken as a vase. To generate the scenes, only six 3D models of vases were used. Thus, some semantic
confusion is perhaps unsurprising, and PHONE2PROC with more visual diversity might be used to even
greater effect.



