
The Art of Algorithm and Knowledge
in the Era of Extreme-Scale Neural Models

by

Ximing Lu

Supervised by Yejin Choi

A senior thesis submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Science
With Departmental Honors

Computer Science & Engineering

University of Washington

March 2023

Presentation of work given on March 21st, 2023

Thesis and presentation approved by ___________________________________

Date ___________________________

Ximing Lu
Yejin Choi

Ximing Lu
03 / 21 / 2023

Honor Thesis Ximing Lu

Abstract

Broadly, my research goal is to build machine intelligence that understands how the world works and in-
teracts with humans safely and reliably. Specifically, I focus on the commonsense reasoning ability and
controllability of neural language models. While scale appears to be today’s recipe for the emergence of
machine intelligence, I would argue for the importance of knowledge as well as training and inference time
reasoning algorithms for the acquisition of commonsense reasoning and controllability. My works demon-
strate how smaller models developed in academia can still have an edge over larger industry-scale models, if
powered with knowledge and/or reasoning algorithms. Concretely, my research branches around two themes:

• Algorithm. Language models, despite its scale or capability, still exhibit behaviors that are misaligned
with user expectations. For example, generated text may contain offensive or toxic language, or fail
to incorporate certain constraints user specified. To this end, my work investigate into reinforcement
learning algorithms that unlearn undesirable behaviors [3] and decoding time algorithms that enforce
faithful constraint satisfaction [2, 1], in order to achieve better controllability and enhance the safety
and reliability of neural language models.

• Knowledge. Human-level language understanding grounds on a commonsense mental model of ‘how
the world works’, which requires physical reasoning over objects and actions, along with higher-order
event reasoning about complex situations. Today’s machines struggle with both. My research seeks to
bridge this gap by enable machine to learn multimodel script knowledge from complex raw data, which
leads to new SOTA performances on a dozen leaderboards that require grounded, temporal, and causal
commonsense reasoning [4, 5].

Constrained Decoding Algorithm. Conditional text generation often requires lexical constraints, i.e.,
which words should or shouldn’t be included in the output text. While the dominant recipe for conditional
text generation has been large-scale pretrained language models, prompted with or finetuned on the task-
specific training data, such models do not learn to follow the underlying constraints reliably. In contrast,
human could perform constrained generation out of the box without seeing any task specific examples. To
enable such capability for neural language model, we propose NEUROLOGIC decoding [2], which effectively
enforces the satisfaction of given lexical constraints by controlling the decoding stage of sequence generation.
Neurologic decoding performs constrained optimization via beam-like search to find optimal sequences with
respect to both likelihood and constraint satisfaction. Neurologic is powerful yet efficient. It handles any
set of lexical constraints that is expressible under predicate logic, while its asymptotic runtime is equivalent
to conventional beam search. I further built on this work through a new algorithm named NEUROLOGIC
A?esque [1] inspired by the A* search algorithm, which incorporates heuristic estimates of future cost into the
search procedure. We develop lookahead heuristics, which approximate cost of satisfying future constraints
based on continuations of the sequence-so-far to aid Neurologic search. Perhaps surprisingly, we find that
unsupervised models often match or outperform supervised approaches when powered with NEUROLOGIC,
even when the latter is based on considerably larger networks. My works suggest the promise of inference-
time algorithms to enable new capability of language models beyond scaling.

Reinforced Unlearning Algorithm. Large neural language models trained on an enormous amount of
web text have excelled at numerous tasks. However, these same language models often exhibit undesirable
behaviors, as they are usually trained to simply maximize the likelihood of their raw pre-training data.
Undesirable behaviors are diverse and hard to avoid, control, or even specify a priori ; I thus argue that it
is critical to investigate ways to unlearn undesirable behaviors post hoc, while maintaining capacity for gen-
erating coherent and fluent language. We introduce Quantized Reward Konditioning (Quark), an algorithm
for optimizing a reward function that quantifies an (un)wanted property, while not straying too far from
the original model. Quark alternates between (i) collecting samples with the current language model, (ii)
sorting them into quantiles based on reward, with each quantile identified by a reward token prepended to
the language model’s input, and (iii) using a standard language modeling loss on samples from each quantile
conditioned on its reward token, while remaining nearby the original language model via a KL-divergence
penalty. By conditioning on a high-reward token at generation time, the model generates text that exhibits

Honor Thesis Ximing Lu

less of the unwanted property. For unlearning toxicity, negative sentiment, and repetition, Quark outper-
forms both strong baselines and state-of-the-art reinforcement learning methods like PPO, while relying only
on standard language modeling primitives.

Multimodel Script Knowledge. Over the last few years, many large-scale NLP and computer vision
models have been trained on a combination of text, images, and manual annotations – yet, this approach
has not been sufficient to ‘solve’ tasks like Visual Commonsense Reasoning (VCR), which requires grounded,
temporal, and causal commonsense reasoning. My work introduces a new approach, where we train a
model on multimodal and temporal data from YouTube [5]. We use new self supervised objectives to learn
multimodal script knowledge. We dub our model MERLOT, short for Multimodal Event Representation
Learning over Time. Our model sets new state of-the-art results on twelve video reasoning tasks, as well
as on VCR. In doing so, it outperforms larger, industry-submitted models that that learn from static data:
images annotated with object detections, and literal descriptions. We recently built on this work through a
new model named MERLOT Reserve [4]. The idea is to learn connections between all modalities including
sound to understand videos. Perhaps surprisingly, our work shows that integrating sound improves vision-
and-text representations. We set a new state-of-the-art on VCR, even though it doesn’t include any sound
for models.

References
[1] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui

Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic a*esque decoding: Constrained
text generation with lookahead heuristics. In Proceedings of the 2022 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, pages 780–799, Seattle, United
States, July 2022. Association for Computational Linguistics.

[2] Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. NeuroLogic
decoding: (un)supervised neural text generation with predicate logic constraints. In Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 4288–4299, Online, June 2021. Association for Computational Linguistics.

[3] Ximing Lu, Sean Welleck, Liwei Jiang, Jack Hessel, Lianhui Qin, Peter West, Prithviraj Ammanabrolu, and
Yejin Choi. Quark: Controllable text generation with reinforced unlearning. In Thirty-sixth Conference on Neural

Information Processing Systems (NeurIPS), 2022.

[4] Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza Salehi, Aditya Kusupati,
Jack Hessel, Ali Farhadi, and Yejin Choi. Merlot reserve: Neural script knowledge through vision and language and
sound. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 16354–16366,
2022.

[5] Rowan Zellers?, Ximing Lu?, Jack Hessel?, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi.
Merlot: Multimodal neural script knowledge models. In Thirty-fifth Conference on Neural Information Processing

Systems (NeurIPS), 2021.

NEUROLOGIC DECODING:
(Un)supervised Neural Text Generation with Predicate Logic Constraints

Ximing Lu†‡ Peter West†‡ Rowan Zellers†‡
Ronan Le Bras‡ Chandra Bhagavatula‡ Yejin Choi†‡

†Paul G. Allen School of Computer Science & Engineering, University of Washington
‡Allen Institute for Artificial Intelligence

{lux32, pawest, rowanz, yejin}@cs.washington.edu
{ronanlb, chandrab}@allenai.org

Abstract

Conditional text generation often requires lex-
ical constraints, i.e., which words should or
shouldn’t be included in the output text. While
the dominant recipe for conditional text gener-
ation has been large-scale pretrained language
models that are finetuned on the task-specific
training data, such models do not learn to fol-
low the underlying constraints reliably, even
when supervised with large amounts of task-
specific examples.

We propose NEUROLOGIC DECODING, a sim-
ple yet effective algorithm that enables neu-
ral language models – supervised or not – to
generate fluent text while satisfying complex
lexical constraints. Our approach is power-
ful yet efficient. It handles any set of lexical
constraints that is expressible under predicate
logic, while its asymptotic runtime is equiva-
lent to conventional beam search.

Empirical results on four benchmarks show
that NEUROLOGIC DECODING outperforms
previous approaches, including algorithms
that handle a subset of our constraints. More-
over, we find that unsupervised models with
NEUROLOGIC DECODING often outperform
supervised models with conventional decod-
ing, even when the latter is based on consid-
erably larger networks. Our results suggest
the limit of large-scale neural networks for
fine-grained controllable generation and the
promise of inference-time algorithms.

1 Introduction

Text generation applications often need to incorpo-
rate semantic constraints, i.e., what words should
and shouldn’t appear in the output generation. Con-
sider the task of generating a recipe from a set of
ingredients (Kiddon et al., 2016), such as ‘garlic,’
‘steak’, and ‘soy sauce’ (Figure 1). A generated
recipe should cover all of those ingredients, without
hallucinating new ones (such as ‘pork’ or ‘beans’).
This restriction, like others in Figure 1 for other

in
pu
t

Scenario

food | table | sit | front

The man sat with his food at the front of the table
The food is in front of you sit at the table.
a table of food sits in front of three people

Concept-Set

COMMONGEN (Lin et al., 2019)

Constraints
(food ⋁ foods) ⋀ (table ⋁ tables) ⋀
(sit ⋁ sits ⋁ sat ⋁ sitting) ⋀ (front ⋁ fronts)

in
pu
t

ou
tp
ut

ou
t Target

ou
t

The physician told the baker that she had cancer.

Der Arzt sagte dem Bäckerin, dass er Krebs habe.

Evaluate Gender Bias in MT (Stanovsky et al., 2019)

Bäckerin Bäcker

Constraints (Ärztin ⋁ Arzt) ⋀ (Bäckerin ⋀ ¬ Bäcker)

Source

Recipe Generation (Kiddon et al., 2016)

in
pu
t

ou
tp
ut

Dish name

2 tsp butter, 1 beef steak, 1/4 tsp soy sauce, 1 tsp
parsley, 1/8 tsp salt , 1/2 tsp garlic

garlic butter steak
Ingredients

Constraints
butter ⋀ (beef ⋁ steak ⋁meat) ⋀ soy sauce ⋀

.(parsley ⋁ herb) ⋀ salt ⋀ (garlic ⋁ vegetable) ⋀

.(¬ pork ⋀.¬ bean ⋀.¬…) any extra ingredients

Recipe
Mix 1 tablespoon butter, parsley, garlic and soy
sauce. Sprinkle steak with salt. In a large skillet,
heat remaining butter over medium heat. Add
steak; cook until meat reaches desired doneness,
4-7 minutes per side. Serve with garlic butter.

Figure 1: Overview of several constrained generation
tasks. For instance, generating a short description from
a set of concepts (COMMONGEN; Lin et al., 2020) re-
quires using each of those words at least once; this can
be expressed as a logical expression (here, ‘(food _
foods) ^ . . .’). Our proposed NEUROLOGIC DECOD-
ING handles all predicate logic constraints efficiently,
yet with the same asymptotic runtime as beam search.

applications, can be modeled by a set of lexical
constraints expressed as a predicate logic formula.

The dominant paradigm today for performing
such constrained generation is to start with a pre-
trained language model, and then finetune it on a
dataset of task-specific examples. However, pre-
trained language models struggle at learning to

ar
X

iv
:2

01
0.

12
88

4v
2

 [c
s.C

L]
 2

0
A

pr
 2

02
1

follow these constraints, even when the finetun-
ing dataset is large. For example, for the afore-
mentioned recipe generation task, a GPT2 model
finetuned on hundreds of thousands of recipes still
hallucinates extra ingredients. In stark contrast,
humans need to see only a few examples (or even
none) to generate the desired output satisfying all
the logical constraints, e.g., writing a recipe that
mentions each ingredient (butter, steak, etc.) with-
out using new ones.

We hypothesize that this mismatch is due to a
fundamental under-specification of finetuning. If
we finetune one of today’s state-of-the-art language
models on a dataset, the likelihood of it generating
sequences from the same distribution should in-
crease. Yet there is no guarantee that this improve-
ment in likelihood will come from improvements
on the fundamental task of constrained generation,
as opposed to picking up on dataset-specific pat-
terns such as language style. In fact, we present
analysis suggesting that ‘worst-case’ learning be-
havior is common in practice: when we increase
the finetuning data fed to GPT2 by an order of mag-
nitude, constraint-satisfaction with standard beam
search shows only modest improvement.

To address this issue, we propose NEUROLOGIC
DECODING, which effectively enforces the satisfac-
tion of given lexical constraints by controlling the
decoding stage of sequence generation. These con-
straints can be any predicate logic formula, which
crucially includes both positive constraints (the
word ‘butter’ must be generated somewhere) and
negative constraints (‘bean’ cannot be generated).
These simpler constraints can then be combined
through logical connectives to handle more com-
plex requirements such as inflection or synonyms
(‘beef’ or ‘steak’ both satisfy the constraint of re-
ferring to the steak). While beam search aims to
maximize the likelihood of the generated sequence,
our method searches for optimal output sequences
among the strings that also satisfy the given con-
straints. It does so efficiently: we convert the hard
logic constraints into a soft penalty term in the de-
coding objective, and use a beam-based search to
find approximately-optimal solutions; constraint
states are tracked to reuse computation. NEURO-
LOGIC DECODING thus effectively and efficiently
controls text generation without requiring any mod-
ification of the model structure or training pipeline.

We evaluate our method on four different text
generation tasks: generative commonsense reason-

ing (COMMONGEN; Lin et al., 2020), recipe genera-
tion (Kiddon et al., 2016), data-grounded dialogue
response generation (Wen et al., 2015), and reduc-
ing gender bias in machine translation (Stanovsky
et al., 2019). Empirical results demonstrate that
NEUROLOGIC DECODING ensures the satisfaction
of given constraints while maintaining high gener-
ation quality, in turn leading to new SOTA results
in both the supervised and zero-shot setting.

2 Method

In this section, we first rigorously define predicate
logic constraint, and then present in detail the NEU-
ROLOGIC DECODING algorithm.

2.1 Predicate Logic Constraint
Let us define a predicate D(a, y) to be a boolean
function indicating the occurrence of key phrase a
in a sequence y, where a can be either unigram or
multi-gram. D(a, y) will be true iff a occurs in y.

D(a, y) ⌘ 9 i, yi:i+|a| = a

NEUROLOGIC accepts lexical constraints in Con-
junctive Normal Form (CNF):
�
D1 _D2 · · · _Di

�
| {z }

C1

^ · · ·^
�
Dk _Dk+1 · · · _Dn

�
| {z }

Cm

where each Di represents a single positive or neg-
ative constraint, D(ai, y) or ¬D(ai, y), restricting
whether key phrase ai should be strictly included
or omitted in y, respectively. Any propositional log-
ical formula can be converted to CNF, and thus
handled by NEUROLOGIC. Notationally, we will
refer to each individual constraint Di as a literal,
and the disjunction of literals as a clause, denoted
as Cj , with L being the total number of clauses.
Our method seeks optimal sequences in which all
clauses are satisfied:

ŷ=argmax
y2Y

P✓(y|x) where
LX

i=1

Ci=L (1)

Past work on constrained optimization introduces
penalties (Fiacco, 1976) to approximate the con-
strained optimization problem with an uncon-
strained problem. Specifically, by adding a high-
cost penalty term for violated constraints:

ŷ =argmax
y2Y

P✓(y|x)� �
0

LX

i=1

(1� Ci) (2)

¬"! ⋁¬"" ⋁"#
0 0 0

R
ev
er
sib
le

Ir
re
ve
rs
ib
le

Unsatisfaction Satisfaction

¬"! ⋁¬"" ⋁"#
1 0 0

¬"! ⋁¬"" ⋁"#
0 0 1

¬"! ⋁¬"" ⋁"#
1 0 1

¬"$ ⋁¬"%
1 1

¬"$ ⋁¬"%
0 0

violate all
negative literals

satisfy
one
positive
literal

violate all negative literals

satisfy one
positive literal

Figure 2: Clause states and possible transitions. Di and
¬Di denote positive and negative literal respectively.

Intuitively, this objective balances sequence likeli-
hood (term 1) and constraint satisfaction (term 2).
The aim is to find sequences that do well at both
dimensions. While exhaustive search is intractable,
we use a beam-based search to find approximately-
optimal solutions for this objective.

2.2 Constraint States
When considering whether a generation hypothesis
satisfies some clause Ci during generation, there
are fundamentally 4 possible states (as in figure 2)
S1 reversible unsatisfaction: If an unsatisfied

clause Ci contains at least one positive literal,
Ci could be satisfied in the future by fulfilling
one of its positive literal(s).

S2 irreversible unsatisfaction: If an unsatisfied
clause Ci contains negative literal(s) only, Ci

will maintain unsatisfied in the future since
the violation of negative literals could not be
overturned.

S3 reversible satisfaction: If all satisfied lit-
eral(s) in a satisfied clause Ci are negative
literal(s), Ci could switch back to unsatisfied
in the future by violating all of its satisfied
negative literal(s).

S4 irreversible satisfaction: If satisfied literal(s)
in a satisfied clause Ci contains at least one
positive literal, Ci will maintain satisfied in
the future since the fulfilment of positive liter-
als is irreversible.

To track the states of literals and clauses efficiently,
we maintain two prefix tries. The first trie, T +,
tracks unsatisfied positive literals from all clauses
in states S1 and S3, while the other trie, T �, tracks
satisfied negative literals from all clauses in state
S3. We do not track anything from clauses in state
S2 or S4, as those are already irreversible.

If a positive literal is satisfied, its clause in state

S1 or S3 is henceforth irreversibly satisfied (state
S4), thus we remove all literals of that clause from
both tries and stop tracking. If a negative literal in
state S3 is violated, we remote it from the trie T �.
Once all negative literals of a clause in state S3 has
been removed, the clause switches back to unsatis-
fied (state S1 or S2). If it has unsatisfied positive
literal(s) in the trie T +, it becomes reversibly unsat-
isfied (state S1); otherwise it shall stay irreversibly
unsatisfied (state S2).

2.3 Algorithm

Since exhaustive search to optimize the CNF con-
straints is intractable, NEUROLOGIC uses a beam-
based search to approximate. The high-level intu-
ition is that at each time step, NEUROLOGIC selects
generation hypotheses in consideration of both the
objective function and the diversity of the partially
satisfied constraints. We achieve such by 3 steps:
pruning, grouping, and selecting (illustrated in fig-
ure 3, and detailed below).

At each time step, the decoding model generates
a distribution over all vocabulary V for k hypothe-
ses in the current beam, resulting in a candidate
score matrix of size k⇥ |V |. Along with generating
score matrix, we produce a constraint state for each
of the k ⇥ |V | new candidates h, based on the next
token considered.

Pruning step: We first discard any h with ir-
reversible unsatisfied clauses (state S2) to focus
only on candidates that might satisfy all constraints.
Then, we filter candidates h to those in the top-tier
of both satisfied constraints and sequence likeli-
hood. Specifically, we drop any candidates not in
the top-↵ in terms of likelihood P✓(yt|y<t), and
not in the top-� in terms of number of satisfied
clauses

PL
i=1Ci. These are adjustable parameters,

corresponding to maximum tolerance to sequence
fluency and constraint satisfaction.

Grouping step: Next, we select the beam from
the pruned candidates. Naively selecting k best can-
didates with respect to the objective function would
not work well, since such greedy selection would
bias toward sequences with high likelihood and
easy-to-satisfy clauses at early timestep, which can
lead to struggling with remaining hard-to-satisfy
clauses later on. Therefore, the key intuition is to
consider diverse partial solutions early on with re-
spect to the set of irreversibly satisfied clauses, i.e.,
{Ci | Ci 2 state S4}. We group candidates based
on this set and select (in the next step) the best ones

Constraints !! cowbo& ⋀!" dog ⋀ (!#(play music) ⋁!$ plays music)⋀ (!% catch ⋁!& catches)
8# 8$8! 8"

runs

catches

plays

eats

plays

talks

talks

plays

catches

cowboy

man

dog

The

t = 0 t = 1 t = 2

search tree score

3

1

4

2

0.18 + 0.1 * 0 = 0.18

0.12 + 0.1 * 0 = 0.12

0.15 + 0.1 * 0 = 0.15

0.11 + 0.1 *
!
" = 0.16

0.09 + 0.1 * 0 = 0.09

select notation

Pruning step:
aaaaa denotes failure in top-ɑ filtering
in term of likelihood , aaaaa denotes
failure in top-β filtering in term of
number of satisfied clauses

Aaaaaaa denotes the state for !!, !",
!#, !$ separately, aaaindicates !% is
irreversibly stratified, aa otherwise.

Grouping step:
aaaaa denotes candidate groups
based on the shared set of irreversibly
satisfied clauses

1 2 43

Selecting step:
aaaa denotes the top-1 candidate
within each group ranked by score
function. Among these candidates, we
selectaaa the top-k ones to fill in the
next beam.

clauseslikelihood

0.05

0.12

0.18

0.20

0.19

0.16

0.15

0.11

0.09

Figure 3: Illustration of the NEUROLOGIC decoding procedure. In this example, k = 3, ↵ = 8, � = 2, � = 0.1

from each group to fill the beam.
Selecting step: To select best ones from each

group, we first rank candidates within a group by
score function:

s = P✓(yt|y<t) + � · max
D(ai,y)
2 state S1

|âi|
|ai|

(3)

where âi is ai’s matched prefix with ongoing gen-
eration. For example, for y = “The boy climbs an
apple” and constraint ai=“apple tree”, we have
âi=“apple”. The second term denotes maximal per-
centage of matched prefix in partially satisfied pos-
itive literals. Intuitively, this score function ranks
candidaite by likelihood and gives a partial reward
to candidates moving towards satisfying a positive
literal in an unsatisfied clause (state S1). � is an ad-
justable parameter, controlling how much we favor
candidates towards fulfilling another unsatisfied
clause. We then proceed in rounds of filling the
beam, visiting each group and taking the best scor-
ing ones in rotation, until we reach k candidates.
The group traversing order follows the descending
order of the highest score in each group. In the end,
we take the highest-scoring hypothesis from the
ones with maximal satisfied clauses.

3 Related Work

NEUROLOGIC distinguishes itself from past works
in constrained decoding in 3 fundamental ways.

• First, NEUROLOGIC generalizes to arbitrary
logical constraints by handling the full scope

of CNF constraint, while previous works only
allow a subset of this (typically conjunctions).

• Second, NEUROLOGIC effectively optimizes
objective function through efficient and di-
verse search over output space, while previous
works suffer from either myopic and narrow
or inefficient exploration of the search space.

• Third, the asymptotic runtime of NEURO-
LOGIC is O(Nk)1, same with beam search,
constant with respect to number of constraints
C. Some previous works suffer from exponen-
tial runtime, making applications infeasible.

A detailed comparison between NEUROLOGIC and
previous methods is provided in table 1.

3.1 Previous Constrained Decoding
Approach

Anderson et al. (2017) propose constrained beam
search (CBS), where constraint satisfaction is
tracked by a finite-state machine with 2C states (all
possible satisfaction status for C constraints). Beam
search is done over all states with k candidates per
state. This method has an exponential complexity
O(Nk2C), making many applications infeasible.

Hokamp and Liu (2017) propose grid beam
search (GBS), which groups together hypotheses
by number of constraints satisfied, giving C + 1

1
N denotes sequence length and k denotes beam size.

In this paper, we the asymptotic runtimes is in terms of the
number of calls to a deep generator that scores P✓(yt|y<t);
this is because calling the generator is the most expensive part
of decoding (as opposed to auxiliary bookkeeping).

Feature Example CBS GBS Post and Vilar Hu et al. CGMH Sha NEUROLOGIC

AND oil ^ pork X X X X X X X
Include oil and pork

Positive Set AND oil ^ (pork _ beef) X X
Include oil and a protein

Any Predicate ¬oil ^ (pork _ beef) X
Logic Formula Oil-free, include a protein

Runtime: O(Nk2C) O(NkC) O(Nk) O(Nk) O(E) O(E) O(Nk)

Table 1: Expressivity and runtime of various decoding methods. AND: Output includes all terms in a set; Positive
Set AND: Output includes at least one term from each set; Predicate Logic Formula: Any combination of positive
and negative constraints. E is the number of editing steps, usually much greater than the sequence length N .

groups altogether. Each group stores at most k can-
didates that are expanded at each timestep. GBS
has a faster runtime of O(NkC), but this approach
bias towards sequences satisfying constraints greed-
ily, and collapses into very similar search paths that
are often times globally sub-optimal, which results
in dropped language quality.

Post and Vilar (2018) propose dynamic beam
allocation to reduce GBS’s explicit dependence on
C. Beam search is done over a single beam, with the
k slots of this beam dynamically allocated over the
C+1 groups explicitly used by GBS. This approach
was made GPU-efficient by Hu et al. (2019a). Still,
the language quality issue of GBS remains, and
can be worse in practice as fewer hypotheses are
considered at each step.

Miao et al. (2019) propose Constrained Gener-
ation by Metropolis-Hastings (CGMH). This ap-
proach begins by inserting all positive-constraint
keywords in random order. Edits are randomly sam-
pled to replace, insert, or delete words to make the
sentence fluent; the probability of each action is
computed on top of a language model. Sha (2020)
proposes using gradient of a objective function to
guide where and how to edit instead of random sam-
pling. These approaches have runtime independent
to number of constraints; yet they can involve re-
peated deletions and insertions, reducing efficiency.
Generation quality is also sensitive to initial key-
word order and sampled edits.

3.2 Applications of Constrained Generation
Lexically constrained generation can be broadly
applied to prior conditional text generation tasks.
Examples include incorporating pre-specified lex-
ical constraints (Anderson et al., 2017; Post and
Vilar, 2018), user-provided terminology constraints
(Hasler et al., 2018; Dinu et al., 2019), noisy au-
tomatic constraints (Li et al., 2019) in translation
output. A major use case of lexical constrained de-

coding is paraphrase generation (Hu et al., 2019a;
Kajiwara, 2019; Hu et al., 2019b; Miao et al., 2019),
by negatively constraining words in the source to
enforce paraphrasing. Another use case is image
captioning, with novel scenes or out-of-domain ob-
jects (Anderson et al., 2017), or requiring explicit
grounding to objects in the scene (Ren et al., 2015;
Krause et al., 2016). In addition, Balakrishnan et al.
(2019) leverage constrained decoding to improve
semantic correctness for response generation.

4 Experiments I: Constrained
Commonsense Generation

COMMONGEN (Lin et al., 2020) is a benchmark
dataset designed as a test of generative common-
sense reasoning. Given a set of common concepts
(e.g., dog, frisbee, catch, throw); the task is to gen-
erate a coherent sentence describing an everyday
scenario using these concepts (e.g., “a man throws
a frisbee and his dog catches it”).

Problem Formulation The input is an un-
ordered set of n concepts x = {a1, a2, . . . , an},
where each concept ai is a common object (noun)
or action (verb). The expected output is a simple,
grammatical sentence y 2 Y that describes a com-
mon scenario using all given concepts in x with
correct morphological inflections.

To apply NeuroLogic Decoding, we impose that
each ai must appear in output y under some mor-
phological inflection. Let ãi = {ãi1, . . . ãi|ãi|} de-
note all inflections of ai. y covers concept ai, if at
least one of {ãi1, . . . ãi|ãi|} appears. Formally,

8 ai 2 x, 9 ã
i
j 2 ãi, D(ãij , y)

where D(ãij , y) is a boolean-value function indicat-
ing whether y contains ãij or not, as defined above.2

2This gets converted into ^n
i=1

�
_|ãi|

j=1 D(ãi
j , y)

�
.

Model ROUGE - L BLEU - 3 & 4 METEOR CIDEr SPICE Coverage

GPT-2 40.3 ! 42.8 34.2 ! 36.7 24.7 ! 26.7 27.6 ! 30.2 13.4 ! 14.7 27.1 ! 30.3 82.2 ! 97.7
BERT-Gen 42.4 ! 43.8 37.5 ! 38.9 27.0 ! 28.2 29.5 ! 30.9 14.9 ! 15.5 29.8 ! 31.4 89.2 ! 97.3
UniLM 44.3 ! 45.8 40.6 ! 42.8 29.9 ! 31.5 30.1 ! 31.7 15.5 ! 16.6 30.6 ! 32.5 90.5 ! 97.8
UniLM-v2 43.5 ! 44.2 39.2 ! 39.5 28.3 ! 28.5 30.6 ! 31.3 15.2 ! 16.8 30.8 ! 31.1 92.8 ! 97.9
BART 43.3 ! 44.7 39.9 ! 41.3 29.1 ! 30.6 30.4 ! 31.0 15.2 ! 15.9 30.6 ! 31.0 95.0 ! 98.7
T5-Large 43.9 ! 44.8 36.6 ! 38.5 26.9 ! 28.1 28.9 ! 30.7 14.3 ! 15.5 29.5 ! 30.8 89.7 ! 98.5

Table 2: Experimental results of different supervised models on the COMMONGEN test set. Under each column,
↵ ! � shows the performance using the conventional beam search (↵) compared to the enhanced performance
using NEUROLOGIC DECODING (�). NEUROLOGIC always improves the performance across all models and all
metrics — with no exception. The best models are bold and second best ones are underlined within each metric.

Domain Adaption Model ROUGE - L BLEU - 3 & 4 METEOR CIDEr SPICE Coverage

GPT 26.7 ! 41.3 3.0 ! 25.1 1.1 ! 15.9 9.2 ! 28.8 0.9 ! 11.7 8.0 ! 29.7 8.4 ! 97.4
No GPT-2 19.7 ! 42.9 4.1 ! 34.4 1.5 ! 23.5 11.2 ! 30.7 0.4 ! 13.6 7.1 ! 31.4 8.3 ! 96.0

Yes GPT-2 29.8 ! 42.4 9.5 ! 36.1 4.0 ! 25.1 11.7 ! 31.3 1.7 ! 13.9 8.0 ! 31.8 9.3 ! 96.1

Table 3: Experimental results of different models in zero shot (unsupervised) setting on the COMMONGEN test
set before and after language domain adaption. Under each column, ↵ ! � shows the performance using the
conventional beam search (↵) compared to the enhanced performance using NEUROLOGIC DECODING (�).

Decode Method ROUGE-L BLEU-3/4 METEOR CIDEr SPICE Coverage

Greedy Decoding 35.3 25.2 16.7 25.8 10.2 24.4 80.3
Top-k Sampling 33.8 22.5 14.4 24.9 9.2 22.7 79.4
Top-p Sampling 35.3 25.0 16.5 25.7 10.2 24.1 80.1
Beam Search 40.3 34.2 24.7 27.6 13.4 27.1 82.2

Hokamp and Liu 37.6 25.6 16.8 25.9 11.1 25.1 97.2
Post and Vilar 38.3 28.1 18.6 26.7 11.8 26.0 97.4
Hu et al. 38.2 27.8 18.4 26.7 11.7 26.1 97.4

NEUROLOGIC 42.8 36.7 26.7 30.2 14.7 30.3 97.7

Table 4: Performance of different decoding methods us-
ing supervised GPT2-L on the COMMONGEN test set.

Dataset The COMMONGEN dataset consists of
35,141 concept-sets (32,651 in train, 993 in val,
1,497 in test) associated with 77,449 sentences. The
average size of the concept-sets in the test set is
4.04, with an average of four sentences per concept-
set and an average sentence length of 13.34 words.

Approach and Baseline The standard pipeline
of approaching this problem is to consider it as a
conditional sentence generation task. We experi-
ment with several recent pre-trained language mod-
els, including GPT-2 (Radford et al., 2019), UniLM
(Dong et al., 2019), UniLM-v2 (Bao et al., 2020),
BERT-Gen (Bao et al., 2020), BART (Lewis et al.,
2020), and T5 (Raffel et al., 2019). All models
are finetuned with their default hyperparameters.
We compare with commonly used decoding meth-
ods, including beam search, sampling, and also
previously proposed constrained decoding meth-
ods. We use several widely-used automatic metrics
to automatically assess the performance, such as

BLEU, ROUGE, METEOR, which mainly focus
on measuring surface similarities. We also include
metrics specially designed for captioning task, such
as CIDEr, and SPICE. Following Lin et al. (2020),
we report the concept Coverage, which is the aver-
age percentage of input concepts that are present in
lemmatizatized outputs.

4.1 Results I: NeuroLogic vs Other Decoding
Methods

In Table 4, we first present comparisons across dif-
ferent decoding methods based on a supervised
sequence-to-sequence model, GPT2. The key ob-
servations are:
1. NEUROLOGIC outperforms all other previous

decoding methods, both constrained and uncon-
strained, with respect to all metrics and often
with a significant margin.

2. NEUROLOGIC not only attains high constraint
satisfaction (COVERAGE), it also improves the
generation quality as quantified over ROUGE,
BLEU, METEOR, CIDEr, and SPICE.

3. In comparison, all previous constrained decod-
ing methods (Hokamp and Liu, 2017; Post and
Vilar, 2018; Hu et al., 2019a) attain high con-
straint satisfaction at the cost of generation qual-
ity; being outperformed here by conventional
beam search with a large margin.

The second and the third points above demonstrate
that the improved logical expressiveness of NEU-
ROLOGIC together with the effective search strat-

1

Figure 4: Performance (y-axis) of supervised GPT2-
Large on COMMONGEN, with a varying amount of
training data for supervision (x-axis). The orange line
denotes decoding with NEUROLOGIC, and the blue
line denotes decoding with conventional beam search.

Figure 5: Performance (y-axis) of GPT2 with varying
model sizes (x-axis). The purple line and blue line de-
note decoding from a supervised model with and with-
out NEUROLOGIC DECODING respectively. The black
line denotes decoding with NEUROLOGIC in zero-shot
(unsupervised) setting.

egy leads to generation that is both higher quality
and satisfies the constraints the most effectively.

4.2 Results II: NeuroLogic across Different
Supervised Models

Table 2 presents experiments across various state-
of-the-art pre-trained language models. In this ex-
periment, all models are supervised on the COM-
MONGEN training dataset. Under each column,
↵ ! � shows the performance using the conven-
tional beam search (↵) compared to the enhanced
performance using NEUROLOGIC DECODING (�).

As before, NEUROLOGIC always improves the
performance across all models and all metrics with
no exception – both in terms of constraint satisfac-
tion as well as generation quality. The improvement
is especially substantial when the generation qual-
ity is relatively low due to smaller model capability
or less efficient model architecture or pre-training.

4.3 Results III: NeuroLogic with
Unsupervised Models

In this experiment, we test how well NEUROLOGIC
works with unsupervised pre-trained language mod-
els, with and without domain adaptation. Table 3
presents experimental results of zero-shot (i.e., un-
supervised) constrained generation. With uncon-
strained decoding, we have zero controllability over

the unsupervised language models, as they ignore
the problem input and generate irrelevant text. With
NEUROLOGIC, on the other hand, we can dramati-
cally improve the performance on all metrics. Fig
6 demonstrates some generated examples.

In zero-shot setting without any finetuning, the
language style of pre-trained LMs might differ
from that of COMMONGEN. To further improve
the performance, we conduct language domain
adaption by fine-tuning the language models on
the training-set COMMONGEN language – ignor-
ing all concept sets. We observe that after domain
adaption, NEUROLOGIC in zero-shot setting out-
performs unconstrained generation with supervised
finetuned LMs, which suggests that inference-time
algorithms can provide a more compute-efficient
avenue to draw better from neural models.

4.4 Results IV: Ablation

The amount of training data Figure 4 com-
pares the performance (y-axis) of supervised GPT2
with NEUROLOGIC (orange line) and with con-
ventional beam search (blue line) as a function
of the increasing amount of training data (x-axis).
Notably, even after being supervised on 100% of
the training data, the supervised GPT2 does not
successfully learn the COMMONGEN constraints
(‘coverage’) and is even outperformed by the zero-
shot GPT2 (i.e., using 0% training data) with NEU-
ROLOGIC.

The model size Figure 5 compares the perfor-
mance (y-axis) of GPT2 with varying model sizes
(x-axis). Regardless of the model size, NEURO-
LOGIC (purple line and black line) boosts perfor-
mance considerably over conventional beam search
(blue line). More over, if using NEUROLOGIC, the
performance of unsupervised models (black line)
becomes comparable to that of supervised mod-
els (purple line). Remarkably, unsupervised mod-
els with NEUROLOGIC based on smaller networks
(black line) often outperform supervised models
with conventional beam search based on consider-
ably larger networks (blue line).

5 Experiments II: Recipe Generation

We next study cooking recipe generation, a
paragraph-level generation task. Given a dish name
and a list of ingredients, the task is to generate
cooking instructions for the given recipe.

Decode Method ROUGE-L BLEU-3/4 METEOR Coverage Extra

Top-k Sampling 27.5 15.2 9.5 19.2 84.8 16.0
Top-p Sampling 28.7 17.6 11.7 19.4 86.4 15.4
Beam Search 29.4 17.4 12.0 19.7 86.5 14.3

Post and Vilar 26.1 13.6 8.8 16.5 89.6 1.15
Hu et al. 26.1 13.6 8.8 16.5 89.6 1.13

NEUROLOGIC 32.1 19.5 13.8 19.8 95.8 0.6

Table 5: Experimental results of different decoding
methods with RecipeGPT on the Recipe1M+ test set.
Coverage indicates the average percentage of ingredi-
ents that are covered in the generated recipe, while Ex-
tra corresponds to the average ratio of hallucinated in-
gredients over the number of given ingredients.

Problem Formulation The input is the recipe
title, an unordered set of ingredients E =
{e1, ..., e|E|} where ei can be a single- or multi-
word ingredient phrase (e.g., ‘onions’, ‘black pep-
per’). Let G denote the set of all ingredients. The
expected output is a paragraph y 2 Y that describes
multi-step cooking instructions.

To apply NEUROLOGIC DECODING, we con-
strain output y to contain all given ingredients ei in
E, and no other ingredients, i.e. no ingredients in
G \E. Ingredients can be referred to with generic
terms (e.g., ‘vegetables’ may refer to ‘onions’, or
‘carrots’) and we denote the generic name for in-
gredient ei as eTi . Formally, the constraint is

⇣
8ei 2 E,D(ei, y) _D(eTi , y)

⌘

^
⇣
8ei 2 G \ E,¬D(ei, y)

⌘

Dataset, Approach and Baseline We use
Recipe1M+, a large-scale, structured corpus of
over one million cooking recipes. On average each
recipe has 118 words and 9 ingredients. RecipeGPT
(Lee et al., 2020) is a GPT-2 model fine-tuned
on Recipe1M+, for generating recipes. Its default
decoding algorithms are beam search and sam-
pling, which serve as the baselines for evaluating
our method. In addition, we compare against pre-
viously proposed constrained decoding methods
with RecipeGPT. Besides common evaluation met-
rics for generation task, we introduce explicit mea-
sures of given-ingredient coverage and usage of
extra/hallucinated ingredients.

Result Table 5 presents the experimental results.
We can see that NEUROLOGIC outperforms all
baselines in all metrics. The delta is quite remark-
able on coverage of given ingredients and usage of
extra ingredients. With NEUROLOGIC, we are able

Supervised? Model ROUGE-L BLEU-4 METEOR

Yes GPT2 70.5 | 72.6 87.6 | 92.4 60.0 | 64.0
Yes BART 72.9 | 70.2 89.5 | 87.0 60.2 | 54.2
Yes T5 70.9 | 69.9 82.4 | 79.7 54.6 | 50.4
Yes Kiddon et al. - 90.6 | 77.8 62.1 | 54.4

No GPT2 + 73.9 | 71.8 94.8 | 90.8 66.6 | 62.0
NEUROLOGIC

Table 6: Results of dialogue generation, the right col-
umn is generation result for hotel systems, the left col-
umn is for restaurant systems

to cover almost all ingredients in generated instruc-
tions and guarantee not to use any other ingredients,
which leads to more accurately controlled genera-
tion. By plugging NEUROLOGIC into existing gen-
eration system, we can get immediate boosts in
controllability and generation quality with no extra
computational cost.

6 Experiments III: Data-Grounded
Dialogue Response Generation

In dialogue responses generation for hotel and
restaurant information systems (Wen et al., 2016),
we generate a natural language response given a
query type (e.g., informing or querying) and a list
of facts to convey (e.g., a hotel’s name and address).

Problem Formulation The input is query type,
unordered set of facts F = {f1, ..., f|F |}, where
each fi contains attribute and value (i.e. ac-
cepts_credit_cards=“yes”, name=“red victorian
bed breakfast”). The expected output is a dialogue
responses y 2 Y containing given information.

The lexical constraint here is that all given facts
fi must be included in responses y in proper natural
language form f

N
i . We use a very simple template

to turn fi to natural language form f
N
i . (i.e. the nat-

ural language form for accepts_credit_cards=“no”
is “doesn’t accept credit cards”). Formally,

8 fi 2 F, D(fN
i , y)

Dataset, Approach and Baseline We use the ho-
tel and restaurant dialogue system corpus and the
same train-dev-test split from (Wen et al., 2016).
There are 8 query types and 12 attribute types.

The standard paradigm for dialogue generation
is to consider it as a conditional sentence genera-
tion task and finetune a seq2seq model. While this
pipeline works effectively with existing data, but
once we have user queries with new query types
or new attribute types, the seq2seq model would
not be able to generate plausible responses. The

Model Accuracy(%; ") �S (F1; #)
En

-D
e Google Translate 59.4 12.5

Microsoft Translator 74.1 30.2
Junczys-Dowmunt et al. 60.5 ! 91.0 13.3 ! 4.3
Junczys-Dowmunt et al.+GT Gender 60.5 ! 95.0 13.3 ! 2.4

En
-F

r Google Translate 63.6 26.7
Microsoft Translator 44.7 29.7
Junczys-Dowmunt et al. 53.0 ! 81.0 19.3 ! 1.7
Junczys-Dowmunt et al. +GT Gender 53.0 ! 89.9 19.3 ! 1.5

Table 7: Performance of Gender Bias Removal on
WinoMT, adapted from Stanovsky et al.. Accuracy
refers to correctly translating a person’s gender, �S is
the difference in performance (F1) between stereotypi-
cal and non-stereotypical gender roles (lower is better).
The arrows (!) show the results before and after NEU-
ROLOGIC DECODING, where gender is inferred from a
coreference model (default) or provided (GT Gender).

situation can happen frequently with a dialogue
generation system in application. Thus, we are in-
terested in zero-shot dialogue generation. We give
a hand-crafted initial prompt to a pre-trained LM
based on the query type and apply NEUROLOGIC
DECODING to force given facts to include in gen-
eration. The pre-trained LM we use here is GPT2
(Radford et al., 2019).

The baseline we compare against is seq2seq fine-
tuned LMs with vanilla beam search, including
GPT-2 (Radford et al., 2019), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2019). We also com-
pare with previous SOTA (Kiddon et al., 2016) on
dialogue response generation.

Result Table 6 presents the experimental results.
We can see that zero-shot generation with proposed
method outperforms or matches supervised base-
lines. This suggests that plugging NEUROLOGIC
DECODING into pretrained LMs can lead to a pow-
erful dialogue generation system, we do not actu-
ally need massive finetuning with extra computa-
tional cost to do that.

7 Experiment IV: Reducing Gender Bias
in Machine Translation

Problem Formulation We adopt the task setup
and dataset of Stanovsky et al. (2019). The input x
is an English sentence describing a scenario with
human entities N = {n1, . . . , n|N |} who are iden-
tified by roles. The desired output is a translation
y which uses the correct gender inflections in the
target language (here, German or French).

We obtain indicators of people’s gender identity

through coreference resolution, linking each entity
with their gendered pronoun.3 We then constrain
the correctly-gendered human entities to appear in
output y. For a human entity ni, let nF

i denote its
female inflection in the target language, and n

M
i

denotes its male inflection. Let F denotes the set of
human entities associated with female characters,
and M denotes the set of entities associated with
male. Formally, the constraint is

⇣
8ni 2 F,D(nF

i , y) ^ ¬D(nM
i , y)

⌘
^

⇣
8ni 2 M,D(nM

i , y) ^ ¬D(nF
i , y)

⌘

Dataset We use Stanovsky et al. (2019)’s dataset,
which is built over the English-only coreference
gender-bias studies: Winogender (Rudinger et al.,
2018) and Wino-Bias (Zhao et al., 2018).

Result Our results are shown in Table 7. When
provided gender markers given by a coreference
model, NEUROLOGIC DECODING increases the
accuracy of handling gender correctly by 30.5
percentage for German, and 28.0 percentage for
French. This even outperforms commercial trans-
lation systems – the best result, over any language
or system, is Microsoft Translator for German with
74.1% accuracy, whereas NEUROLOGIC DECOD-
ING enables the baseline model to get 91% accu-
racy. The performance increases again by an ad-
ditional 4% (German) and 8.9% (French) when
ground-truth gender markers are used during con-
strained decoding. Last, the diagnostic results also
show that NEUROLOGIC DECODING is particu-
larly effective at reducing (over)reliance on stereo-
typical gender roles, with a significant decrease in
performance difference �S between stereotypical
and non-stereotypical gender roles. These results
suggest that NEUROLOGIC DECODING a plug-and-
play approach for reducing gender bias in existing
translation systems.

8 Conclusion

We propose NEUROLOGIC DECODING, an effi-
cient and general method for generating with arbi-
trary predicate logic constraints. We demonstrate
its intuitive application to 4 different tasks as an
extension to existing models, showing broad and
consistent improvement to decoding quality.

3We could use any off-the-shelf coreference resolution
model for this. However, since the English examples in
Stanovsky et al. (2019) follow the Winograd schemas format,
we use a RoBERTa model finetuned on Winograd Schema
Challenge for this, with 78.4% accuracy.

Acknowledgements

We thank the anonymous reviewers and meta-
reviewers for their helpful feedback. This research
was supported in part by DARPA under the MCS
program through NIWC Pacific (N66001-19-2-
4031) and the Allen Institute for AI (AI2).

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
936–945, Copenhagen, Denmark. Association for
Computational Linguistics.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Con-
strained decoding for neural NLG from composi-
tional representations in task-oriented dialogue. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 831–
844, Florence, Italy. Association for Computational
Linguistics.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jian-
feng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2020.
Unilmv2: Pseudo-masked language models for uni-
fied language model pre-training.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3063–3068, Florence, Italy. Association for Compu-
tational Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 13063–13075. Curran As-
sociates, Inc.

A. Fiacco. 1976. Sensitivity analysis for nonlinear pro-
gramming using penalty methods. Mathematical
Programming, 10:287–311.

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and
Bill Byrne. 2018. Neural machine translation decod-
ing with terminology constraints. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 506–512, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin
Van Durme. 2019a. Improved lexically constrained
decoding for translation and monolingual rewriting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 839–850,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

J. Edward Hu, Rachel Rudinger, Matt Post, and Ben-
jamin Van Durme. 2019b. Parabank: Monolingual
bitext generation and sentential paraphrasing via
lexically-constrained neural machine translation. In
AAAI.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F. T. Mar-
tins, and Alexandra Birch. 2018. Marian: Fast neu-
ral machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Tomoyuki Kajiwara. 2019. Negative lexically con-
strained decoding for paraphrase generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6047–
6052, Florence, Italy. Association for Computational
Linguistics.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 329–339, Austin, Texas. Associa-
tion for Computational Linguistics.

Jonathan Krause, Benjamin Sapp, Andrew Howard,
Howard Zhou, Alexander Toshev, Tom Duerig,
James Philbin, and Li Fei-Fei. 2016. The unrea-
sonable effectiveness of noisy data for fine-grained
recognition. ArXiv, abs/1511.06789.

H. Lee, Shu Ke, Palakorn Achananuparp, P. K. Prase-
tyo, Y. Liu, E. Lim, and L. R. Varshney. 2020.
Recipegpt: Generative pre-training based cooking
recipe generation and evaluation system. Compan-
ion Proceedings of the Web Conference 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,

https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.18653/v1/N18-2081
https://doi.org/10.18653/v1/N18-2081
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://doi.org/10.18653/v1/P19-1607
https://doi.org/10.18653/v1/P19-1607
https://doi.org/10.18653/v1/D16-1032
https://doi.org/10.18653/v1/D16-1032
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703

and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Huayang Li, Guoping Huang, and Lemao Liu. 2019.
Neural machine translation with noisy lexical con-
straints.

Bill Yuchen Lin, Ming Shen, Wangchunshu Zhou, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. Commongen: A constrained text gener-
ation challenge for generative commonsense reason-
ing. In Findings of EMNLP.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. Cgmh: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6834–6842.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. ArXiv, abs/1910.10683.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and
Jian Sun. 2015. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39:1137–1149.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14.

Lei Sha. 2020. Gradient-guided unsupervised lexically
constrained text generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8692–8703,
Online. Association for Computational Linguistics.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1679–1684, Florence, Italy. Association
for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Lina M. Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016. Multi-domain
neural network language generation for spoken di-
alogue systems. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 120–129, San Diego, Cal-
ifornia. Association for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias
in coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20.

https://www.aclweb.org/anthology/2020.acl-main.703
http://arxiv.org/abs/1908.04664
http://arxiv.org/abs/1908.04664
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/2020.emnlp-main.701
https://doi.org/10.18653/v1/2020.emnlp-main.701
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199

Concept-Set {throw, knife, stand, target, front}

[GPT-2]: A man is holding a knife and standing in front of a target.
[UniLM]: A man stands next to a knife and throws it at the target .
[BART]: A man stands in front of a target and throws a knife.
[T5]: a man throws a knife in front of a target.

[GPT-2]: A man stands and throws a knife in front of a target.
[UniLM]: A man stands next to a knife and throws it at the front of the target .
[BART]: A man stands in front of a target and throws a knife.
[T5]: a man stands in front of a target and throws a knife.

Decode with NEUROLOGIC

Decode with Beam Search

Supervised Setting

[GPT-2]: The girl’s target was standing in front of her, and she threw a knife at him.
[GPT]: the girl standing in front of him threw her knife at his target

Decode with NEUROLOGIC

Zero Shot Setting

Concept-Set {lose, board, balance, fall, ride}

[GPT-2]: Someone loses balance and falls off his bike.
[UniLM]: A man is trying to keep his balance as he falls off a board.
[BART]: A man loses his balance and falls off the balance while riding a skateboard.
[T5]: a man loses his balance on the board and falls.

[GPT-2]: A man loses his balance as he rides a roller coaster and falls off the board.
[UniLM]: Someone loses balance on the ride and falls off the balance board.
[BART]: A man loses his balance on a ride and falls off the board.
[T5]: a rider loses his balance and falls off the board.

Decode with NEUROLOGIC

Decode with Beam Search

Supervised Setting

[GPT-2]: The boy lost his balance riding the bike, falling off the bike and hitting his head on the board.
[GPT]: a woman lost her balance riding a horse, falling off the horse, and hitting her head on a board

Decode with NEUROLOGIC

Zero Shot Setting

Concept-Set {bell, bike, sidewalk, ride, ring}

[GPT-2]: A man rides a bicycle down a sidewalk and rings a bell.
[UniLM]: A man rides his bike on a sidewalk and rings the bell on the sidewalk .
[BART]: A man rides his bike on the sidewalk and rings a bell.
[T5]: a ringing bell on a bicycle riding on the sidewalk

[GPT-2]: A man rides his bike down a sidewalk and rings a bell.
[UniLM]: A man rides his bike on the sidewalk and rings the bell on his bicycle .
[BART]: A man rides his bike on the sidewalk and rings a bell.
[T5]: a man rides a bike on the sidewalk as the bell rings.

Decode with NEUROLOGIC

Decode with Beam Search

Supervised Setting

[GPT-2]: The child rings the bell, rides the bike, and then goes to the sidewalk.
[GPT]: the child’s bell rang, and the sidewalk began to fill with people riding their bikes

Decode with NEUROLOGIC

Zero Shot Setting

Figure 6: Generation examples of different models in supervised and zero-shot setting with and without NEURO-
LOGIC DECODING, on COMMONGEN.

NEUROLOGIC AFesque Decoding:
Constrained Text Generation with Lookahead Heuristics

Ximing Lu‡† ~Sean Welleck†‡ ~Peter West†
Liwei Jiang‡† Jungo Kasai‡† Daniel Khashabi‡ Ronan Le Bras‡

Lianhui Qin† Youngjae Yu‡ Rowan Zellers† Noah A. Smith†‡ Yejin Choi †‡

‡Allen Institute for Artificial Intelligence
†Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract
The dominant paradigm for neural text gen-
eration is left-to-right decoding from autore-
gressive language models. Constrained or con-
trollable generation under complex lexical con-
straints, however, requires foresight to plan
ahead feasible future paths.

Drawing inspiration from the A* search algo-
rithm, we propose NEUROLOGIC AFesque,1
a decoding algorithm that incorporates heuris-
tic estimates of future cost. We develop ef-
ficient lookahead heuristics that are efficient
for large-scale language models, making our
method a drop-in replacement for common
techniques such as beam search and top-k sam-
pling. To enable constrained generation, we
build on NEUROLOGIC decoding (Lu et al.,
2021), combining its flexibility in incorpo-
rating logical constraints with AFesque esti-
mates of future constraint satisfaction.

Our approach outperforms competitive base-
lines on five generation tasks, and achieves
new state-of-the-art performance on table-to-
text generation, constrained machine trans-
lation, and keyword-constrained generation.
The improvements are particularly notable on
tasks that require complex constraint satisfac-
tion or in few-shot or zero-shot settings. NEU-
ROLOGIC AFesque illustrates the power of de-
coding for improving and enabling new capa-
bilities of large-scale language models.

1 Introduction

The dominant paradigm for neural text genera-
tion is based on left-to-right decoding from au-
toregressive language models such as GPT-2/3
(Radford et al., 2019; Brown et al., 2020). Un-
der this paradigm, common decoding techniques
such as beam search or top-k/p sampling (Holtz-
man et al., 2020) determine which token to generate

~ Co-second-authors. Other authors are listed alphabeti-
cally, as all contributed significantly.

1pronounced [ey stAr Esk].

summer on the road

winter through the snow ✓
✗

I drive my car during the

 Write a sentence with these concepts

car drive snow

p(w |past) = 0.4 A�

p(w |past) = 0.2
Figure 1: NEUROLOGICF leverages lookahead heuris-
tics to guide generations towards those that satisfy
the given task-specific constraints. In this example
from the COMMONGEN task, although summer is a
more likely next word given the already-generated past,
NEUROLOGICF looks ahead to see that selecting win-
ter results in a generation that incorporates unsatis-
fied constraint snow with a higher probability later on.
Thus, winter is preferred despite being lower probabil-
ity than summer.

next based on what happened in the past, without
explicitly looking ahead into the future. While
this lack of foresight often suffices for open-ended
text generation – where any coherent text can be
acceptable – for constrained text generation, plan-
ning ahead is crucial for incorporating all desired
content in the generated output (Hu et al., 2017;
Dathathri et al., 2019).

Classical search algorithms such as A* search
(Hart et al., 1968; Pearl, 1984; Korf, 1985) ad-
dress the challenge of planning ahead by using
heuristic estimation of future cost when making
decisions. Drawing inspiration from A* search,
we develop NEUROLOGIC AFesque (shortened to
NEUROLOGICF), which combines A*-like heuris-
tic estimates of future cost (e.g. perplexity, con-
straint satisfaction) with common decoding algo-
rithms for neural text generation (e.g. beam search,
top-k sampling), while preserving the efficiency
demanded by large-scale neural language models.

As selecting the next token to generate based on
the optimal future cost is NP-complete (Chen et al.,

ar
X

iv
:2

11
2.

08
72

6v
1

 [c
s.C

L]
 1

6
D

ec
 2

02
1

2018), we develop lookahead heuristics, which ap-
proximate cost at each decoding step based on con-
tinuations of the sequence-so-far. Figure 1 shows
an example, where NEUROLOGIC AFesque guides
generation towards a decision that would have been
ignored based on the past alone, but is selected af-
ter looking ahead and incorporating the probability
that constraints are satisfied in the future.

Our approach builds on NEUROLOGIC Decod-
ing of Lu et al. (2021), a variation of beam-search
for controlling generation through rich logic-based
lexical constraints expressed in Conjunctive Nor-
mal Form (CNF). Our work generalizes Lu et al.
(2021) by (1) incorporating novel lookahead heuris-
tics to estimate future contraint satisfaction, and (2)
developing additional unconstrained variants that
can work with an empty set of constraints. These
new algorithm variants support broad applications
of NEUROLOGICF, including unconstrained gen-
eration, as demonstrated in our experiments.

Extensive experiments across five generation
tasks demonstrate that our approach outperforms
competitive baselines. We test NEUROLOGICF

in conjunction with both supervised and unsuper-
vised models and find that the performance gain
is pronounced especially in zero-shot or few-shot
settings. In particular, on the COMMONGEN bench-
mark, using our proposed decoding algorithm with
an off-the-shelf language model outperforms a host
of supervised baselines with conventional decod-
ing algorithms. This demonstrates that a strong
inference-time algorithm such as NEUROLOGICF

can alleviate the need for costly datasets that are
manually annotated for explicit supervision. More-
over, we find that NEUROLOGICF achieves state-
of-the-art performance in various settings, includ-
ing WMT17 English-German machine translation
with lexical constraints (Dinu et al., 2019) and few-
shot E2ENLG table-to-text generation (Chen et al.,
2020b).

In summary, we develop NEUROLOGIC
AFesque, a new decoding algorithm for effective
and efficient text generation. To our knowledge
this is the first A*-like algorithm for guided text
generation via lookahead heuristics. Our algorithm
is versatile, as it can be applied to a variety of tasks
via inference-time constraints, reducing the need
for costly labeled data. Extensive experiments
show its effectiveness on several important
generation benchmarks.

2 NEUROLOGIC AFesque Decoding

We describe NEUROLOGIC AFesque Decoding
(shortened as NEUROLOGICF), our decoding algo-
rithm motivated by A⇤ search (Hart et al., 1968), a
best-first search algorithm that finds high-scoring
paths using a heuristic estimate of future return.
We first introduce the decoding problem, and then
describe our heuristics with a novel lookahead pro-
cedure for adapting NEUROLOGICF search to un-
constrained and constrained generation with large-
scale autoregressive models.

2.1 Decoding With AFesque Lookahead
Decoding. Sequence-to-sequence generation is
the task of generating an output sequence y
given an input sequence x. We consider standard
left-to-right, autoregressive models, p✓(y|x) =Q|y|

t=1 p✓(yt|y<t,x), and omit x to reduce clutter.
Decoding consists of solving,

y⇤ = argmax
y2Y

F (y). (1)

Where Y is the set of all sequences. In our setting,
the objective F (y) takes the form s(y) + H(y),
where s(y) is log p✓(y), and H(y) is either zero
or is a score for satisfying constraints on y.

Our method takes the perspective of decoding as
discrete search, in which states are partial prefixes,
y<t, actions are tokens in vocabulary V (i.e. yt 2
V) and transitions add a token to a prefix, y<t � yt.
Each step of decoding consists of 1) expanding a set
of candidate next-states, 2) scoring each candidate,
and 3) selecting the k best candidates:

Y
0
t = {y<t � yt | y<t 2 Yt�1, yt 2 V},
Yt = arg topk

(y<t,yt)2Y 0
t

{f(y<t, yt)} , (2)

where Y0 = {hbosi} and f(·) is a scoring func-
tion that approximates the objective F . Common
decoding algorithms such as beam search score
candidates without considering future tokens, e.g.,
f(y<t, yt) = log p✓(yt).

Lookahead heuristics. Our method incorpo-
rates an estimate of the future into candidate se-
lection. Ideally, we want to select candidates that
are on optimal trajectories, replacing Equation 2
with:

Yt = arg topk
(y<t,yt)2Y 0

t

⇢
max
y>t

F (y<t, yt,y>t)

�
. (3)

However, computing Equation 3 presents two dif-
ficulties: 1) the objective F (y) may be unknown
or difficult to compute, and 2) the space of future
trajectories y>t is prohibitively large.

Motivated by A⇤ search (Hart et al., 1968), a
best-first search algorithm that finds high-scoring
paths by selecting actions that maximize,

f(a) = s(a) + h(a),

where s(a) is the score-so-far and h(a) is a heuris-
tic estimate of the future score. We approximate
the objective using a lightweight heuristic h(·),

Yt = arg topk
yt2Y 0

t

⇢
s(yt) + max

y>t
h(y<t, yt,y>t)

�
,

(4)

where s(yt) = log p✓(yt). To make the search
tractable, we search over a set of lookahead contin-
uations, approximating Equation 3 as,

Yt = arg topk
yt2Y 0

t

⇢
s(yt) + max

L`(yt)
h(yt+`)

�
,

(5)

where each element yt+1:t+` of L`(yt) is a length-
` continuation of yt. Beam search corresponds to
setting ` and h to 0.

AFesque decoding. Beam search, A* search,
and our method fall under a general class of algo-
rithms that differ based on (1) which candidates are
expanded, (2) which candidates are pruned, (3) how
candidates are scored (Meister et al., 2020). We in-
herit the practical advantages of beam search-style
expansion and pruning, while drawing on A*-like
heuristics to incorporate estimates of the future,
and refer to our method as AFesque decoding.

Generating lookaheads. We compare several
methods for generating the lookaheads L`(yt).

The greedy lookahead produces a single se-
quence, L` = {yt+1:t+`}, starting from yt

and selecting each token according to yt0 =
argmaxy2V p✓(y|y<t0).

We also consider a relaxation which interpolates
between providing the greedy token and a uniform
mixture of tokens as input at each step. Specifi-
cally, we adjust the model’s probabilities with a
temperature, p̃✓(yt|y<t) = softmax(st/⌧), where
st 2 R|V| is a vector of logits, and feed the ex-
pected token embedding as input at step t,

et = Eyt⇠p̃(yt|y<t)[E(yt)], (6)

where E 2 R|V|⇥d is the model’s token embedding
matrix. This soft lookahead moves from providing
the greedy token as input (⌧ ! 0) to a uniform
mixture of tokens (⌧ ! 1) based on the value
of temperature ⌧ . When using the soft lookahead,
we use p̃ in place of p when scoring tokens. The
soft (and greedy) lookahead is efficient, but only
explores a single trajectory.

The beam lookahead trades off efficiency for
exploration, returning a set L` containing the top-k
candidates obtained by running beam search for `
steps starting from y<t.

Finally, the sampling lookahead explores be-
yond the highly-probable beam search continua-
tions, generating each yt+1:t+` 2 L` using,

yt0 ⇠ p✓(y|y<t0),

for t0 from t+1 to t+k.
Next, we move to our proposed lookahead heuris-

tics, starting with the unconstrained setting.

2.2 Unconstrained Generation with
NEUROLOGICF

First we consider a standard decoding setting,

argmax
y2Y

log p✓(y|x).

We score candidates based on a combination of the
history and estimated future, by using the likeli-
hood of the lookahead as a heuristic. That is, at the
tth step of decoding, we use Equation 5:

h(yt+`) = � log p✓(yt+1:t+`|yt,x), (7)

where � controls how much we rely on the esti-
mated future versus the history, similar to weighted
A* (Pohl, 1970).

2.3 NEUROLOGICF for Constrained
Generation

Our lookahead heuristics lend themselves to decod-
ing with lexical constraints in a way that standard
beam search does not. For constrained generation,
we build on and generalize NEUROLOGIC decod-
ing algorithm of Lu et al. (2021)– a beam-based
search algorithm that supports a wide class of logi-
cal constraints for lexically constrained generation–
with estimates of future contraint satisfaction.

Background of NEUROLOGIC. NEUROLOGIC
Lu et al. (2021) accepts lexical constraints in Con-
junctive Normal Form (CNF):
�
D1 _D2 · · · _Di

�
| {z }

C1

^ · · ·^
�
Di0 _Di0+1 · · · _DN

�
| {z }

CM

where each Di represents a single positive or nega-
tive constraint, D(a, y) or ¬D(a, y), enforcing the
phrase a to be included in or omitted from y. Lu
et al. (2021) refer to each constraint Di as a literal,
and each disjunction Cj of literals as a clause.

NEUROLOGIC is a beam-based approximate
search for an objective which seeks fluent se-
quences in which all clauses are satisfied:

argmax
y2Y

p✓(y|x)� �
0

MX

j=1

(1� Cj),

where �
0 � 0 penalizes unsatisfied clauses. At

each step of the search, NEUROLOGIC scores each
of the k⇥|V| candidates (y<t, yt) based on whether
they (partially) satisfy new constraints,

f(yt) = log p✓(yt|x) + �1 max
D(a,yt)

|â|
|a| , (8)

where the maximization is over a set of unsatis-
fied multi-token constraints a tracked by NEURO-
LOGIC, and â is the prefix of a in the ongoing gen-
eration. For example, for yt =“The boy climbs an
apple” and constraint a=“apple tree”, â is “apple”.
Intuitively, this function rewards candidates that
are in the process of satisfying a constraint.

In lieu of taking the top-k scoring candidates
(Equation 5), NEUROLOGIC prunes candidates that
contain clauses that violate constraints, groups the
candidates to promote diversity, and selects high-
scoring candidates from each group. We use the
same pruning and grouping approach, and refer the
reader to Lu et al. (2021) for further details.

NEUROLOGICF decoding. Our method im-
proves upon the NEUROLOGIC scoring function
with an estimate of future constraint satisfaction.
Our key addition is a lookahead heuristic that ad-
justs a candidate (y<t, yt)’s score proportional to
the probability of satisfying additional constraints
in the lookahead yt+1:t+`:

hfuture(yt+`) =

�2 max
D(a,yt)

log p✓(D(a,yt+1:t+`)|x,yt), (9)

where we define the probability that constraint a is
satisfied using the most probable subsequence,

p✓(D(a,yt+1:t+`)|x,yt) =

max
t02[t,t+`]

p✓(yt0:t0+|a| = a|x,y<t0), (10)

�2 is a scaling hyperparameter for the heuristic.

Intuitively, this lookahead heuristic brings two
benefits. When yt is a token that would satisfy a
multi-token constraint, the lookahead incorporates
the score of the full constraint. When yt is a token
that is not part of a constraint, the lookahead allows
for incorporating the score of a future constraint
that would be satisfied if yt was selected.

We add our lookahead heuristic to the NEU-
ROLOGIC scoring function (Equation 8), and call
the resulting decoding procedure NEUROLOGIC
AFesque (or, NEUROLOGICF in short).

Task Supervision Constraints

Commonsense Generation zero+full w/
Machine Translation full w/
Table-to-text Generation few w/
Question Generation zero w/
Commonsense Story Generation full w/o

Table 1: Tasks and setups considered in this work.

3 Experiments: Constrained Generation
We present experimental results on various
constrained generation benchmarks: COMMONGEN

(§3.1), constrained machine translation (§3.2),
table-to-text generation (§3.3), and interrogative
sentence generation (§3.4). NEUROLOGICF con-
sistently outperforms NEUROLOGIC and all pre-
vious approaches. The improvement is especially
substantial in zero-shot and few-shot cases where
the search problem is much harder.

Experimental setups. We explore a variety of
experimental setups (Table 1). In terms of supervi-
sion, we consider different configurations of zero-
shot, few-shot and full-shot. The former two super-
vision regimes are particularly important as many
realistic generation application do not come with
many manually-annotated labeled data. Addition-
ally, we study both constrained and unconstrained
tasks, even though we focus on the former.

Evaluation metrics. We use the following auto-
matic metrics that are commonly used for eval-
uating text generation: BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), CIDEr (Vedantam et al., 2015),
SPICE (Anderson et al., 2016) and NIST (Lin and
Hovy, 2003). Any other domain specific metrics
are detailed in each task description.

3.1 Constrained Commonsense Generation
COMMONGEN (Lin et al., 2020) is a constrained com-
monsense generation task with lexical constraints.

Decode Method Automatic Evaluation Human Evaluation
ROUGE-L BLEU-4 METEOR CIDEr SPICE Coverage Quality Plausibility Concepts Overall

Supervised
CBS (Anderson et al., 2017) 38.8 20.6 28.5 12.9 27.1 97.6 2.27 2.35 2.51 2.23
GBS (Hokamp and Liu, 2017) 38.2 18.4 26.7 11.7 26.1 97.4 2.06 2.17 2.29 2.01
DBA (Post and Vilar, 2018a) 38.3 18.7 27.7 12.4 26.3 97.5 2.23 2.30 2.43 2.15
NEUROLOGIC (Lu et al., 2021) 42.8 26.7 30.2 14.7 30.3 97.7 2.54 2.56 2.67 2.50
NEUROLOGICF (greedy) 43.6 28.2 30.8 15.2 30.8 97.8 2.66 2.67 2.73 2.59
NEUROLOGICF (sample) 43.4 27.9 30.8 15.3 31.0 97.7 2.64 2.64 2.74 2.58
NEUROLOGICF (beam) 43.2 28.2 30.7 15.2 31.0 97.6 2.68 2.67 2.76 2.60
Unsupervised
TSMH (Zhang et al., 2020) 24.7 2.2 14.5 3.6 15.4 71.5 1.85 1.92 1.95 1.63
NEUROLOGIC (Lu et al., 2021) 41.9 24.7 29.5 14.4 27.5 96.7 2.64 2.52 2.68 2.50
NEUROLOGICF (greedy) 44.3 28.6 30.7 15.6 29.6 97.1 2.78 2.70 2.77 2.70

Table 2: Performance of various decoding methods with supervised or off-the-shelf GPT-2 on the COMMONGEN test
set, measured with automatic and human evaluations. We only tried NEUROLOGICF (greedy) in the unsupervised
setting because of the computational cost. The best numbers are bolded and the second best ones are underlined.

Words Method Generation

cut GBS Cut a piece of wood to use as a fence.
piece DBA Cut a piece of wood to use as a fence.
use NEUROLOGIC Piece of wood used for cutting.
wood NEUROLOGICF A man cuts a piece of wood using a circular saw.

ball GBS A dog is run over by a ball and mouth agape.
dog DBA A dog is run over by a ball and bites his mouth.
mouth NEUROLOGIC A dog is running and chewing on a ball in its mouth.
run NEUROLOGICF A dog running with a ball in its mouth.

dog GBS Soap and water scrubbed dog with a towel.
scrub DBA Soap and water on a dog and scrubbed skin.
soap NEUROLOGIC A dog is scrubbing his paws with soap and water.
water NEUROLOGICF A man is scrubbing a dog with soap and water.

Table 3: Example generations for the COMMONGEN task
across supervised NEUROLOGICFand baselines, in-
cluding GBS (Hokamp and Liu, 2017), DBA (Post and
Vilar, 2018a), and NEUROLOGIC (Lu et al., 2021)

Given a set of concepts (e.g., {throw, run, javelin,
track}), the task is to generate a coherent sentence
describing a plausible scenario using all of the
given concepts (e.g., “a man runs on a track and
throws a javelin.”).

Approach and Baselines. Following Lu et al.
(2021), we enforce that each given concept ci must
appear in output y under some morphological in-
flection. We experiment with both supervised and
zero-shot settings. In the supervised setting, we for-
mulate it as conditional sentence generation task
and finetune GPT-2 (Radford et al., 2019) as a
sequence-to-sequence model. In the zero-shot set-
ting, we use GPT-2 off-the-shelf (no fine-tuning),
and rely on constrained decoding to guide the gen-
erations. We compare with previous constrained
decoding algorithms, including CBS (Anderson
et al., 2017), GBS (Hokamp and Liu, 2017), DBA
(Post and Vilar, 2018a), NEUROLOGIC (Lu et al.,

2021) and TSMH (Zhang et al., 2020)

Metrics Following Lin et al. (2020), we report
automatic generation metrics as well as coverage,
defined as the average percentage of the provided
concepts that are present in lemmatized outputs.
Additionally, we conduct human evaluation on 100
test examples with workers from Amazon Mechan-
ical Turk (AMT). We include our evaluation tem-
plate in Figure 5 of Appendix A. Workers are given
a pair of concepts and a model generation, and
asked to rate each pair on language quality, sce-
nario plausibility, coverage of given concepts, and
an overall score, in the Likert scale: Agree, Neutral,
and Disagree. Each pair is rated by 3 workers.

Results. Table 2 compares different constrained
decoding methods on top of the finetuned and off-
the-shelf GPT-2, in supervised and zero-shot set-
tings respectively. The key observations are:
1. NEUROLOGICF outperforms all previous

constrained-decoding methods in both super-
vised and zero-shot settings. Surprisingly, un-
supervised NEUROLOGICF outperforms all su-
pervised methods based on human evaluation.

2. Compared to vanilla NEUROLOGIC,
NEUROLOGICF improves the generation
quality while maintaining high constraint
satisfaction. The difference is especially
substantial in the zero-shot case, where there is
more room for incorporating constraint-driven
signals due to the lack of supervision and the
large output space.

3. NEUROLOGICF reaches similar performance
with different lookahead strategies, among
which beam lookahead slightly outperforms the

(a) (b)

(c) (d)
Figure 2: Performance (y-axis) of supervised GPT-2
in terms of BLEU-4 and Coverage with varying look-
ahead parameters (x-axis) on COMMONGEN validation
set.

others based on human evaluation, and greedy
lookahead has the lowest runtime.

Studying lookahead strategies. With an infinite
lookahead length ` and number of lookaheads |L`|,
lookahead decoding exactly solves Equation 3. For
practical choices of ` and |L`|, we empirically
study how varying the lookahead strategy and hy-
perparameters affects performance. In Figure 2, we
study the greedy, soft, beam, and sampling looka-
head strategies (§2.1).

Figure 2(a) shows the effect of increasing the
lookahead horizon ` for the greedy strategy. In-
creasing the horizon improves up to one point –
e.g., 5-7 steps – then decreases thereafter, likely
due to the difficulty of long-horizon approxima-
tion.

Figure 2(b) studies the temperature in the soft
lookahead, showing that greedy (⌧ = 0.0) per-
forms well, with slight gains if ⌧ is carefully se-
lected. The results suggest that one can safely by-
pass tuning ⌧ using fast, greedy lookahead.

Next, Figure 2(c) shows that with beam looka-
head, increasing the beam width improves perfor-
mance up to a certain point (here, 11). Similarly,
increasing the number of samples with sampling
lookahead improves over a single sample, and then
reaches an inflection point (Figure 2(d)).

3.2 Constrained Machine Translation

It is often critical to have control over machine
translation output. For example, domain-specific
dictionaries can be incorporated to force a model

Method Dinu et al. Marian MT
BLUE Term% BLUE Term%

Unconstrained 25.8 76.3 32.9 85.0
train-by-app. 26.0 92.9 – –
train-by-rep. 26.0 94.5 – –
Post and Vilar (2018a) 25.3 82.0 33.0 94.3
NEUROLOGIC 26.5 95.1 33.4 97.1
NEUROLOGICF (greedy) 26.7 95.8 33.7 97.2
NEUROLOGICF (sample) 26.6 95.4 33.7 97.2
NEUROLOGICF (beam) 26.6 95.8 33.6 97.2

Table 4: Results on constrained machine translation.
The left section uses the same two-layer transformer
model as Dinu et al. (2019) for fair comparisons. The
right one decodes a stronger Marian MT EN-DE model.
The highlighted methods modify training data specifi-
cally for constrained decoding, and thus cannot be ap-
plied to off-the-shelf models. The best numbers are
bolded and the second best ones are underlined.

T # Sents. Decode Method BLEU Term%

1 378
Beam search 25.4 79.6
NEUROLOGIC 26.2 95.2
NEUROLOGICF 26.3 95.8

2+ 36
Beam search 28.1 85.0
NEUROLOGIC 28.9 93.7
NEUROLOGICF 29.3 96.5

Table 5: Constrained Machine Translation performance
broken down by the number of constraint terms (# T).
All configurations use the two-layer tranformer from
Dinu et al. (2019). The best numbers are bolded and
the second best ones are underlined.

to use certain terminology (Post and Vilar, 2018a;
Dinu et al., 2019). To achieve this goal, much recent
work proposed constrained decoding algorithms
(Chatterjee et al., 2017; Hokamp and Liu, 2017;
Hasler et al., 2018; Hu et al., 2019, inter alia) or
specialized training (Dinu et al., 2019). We demon-
strate that NEUROLOGICF can be readily applied
to off-the-shelf MT systems for constrained ma-
chine translation. Specifically, we follow the setup
in Dinu et al. (2019) and evaluate our method on
the WMT17 EN-DE test data (Bojar et al., 2017).
The constraint here is to integrate a given custom
terminology into the translation output; constraint
terms are automatically created from the IATE EU
terminology database for 414 test sentences.2

Approach, Baselines, and Metrics. We exper-
iment with two MT systems: Dinu et al. (two-
layer transformer) and the off-the-shelf Marian MT
(Junczys-Dowmunt et al., 2018). We compare with
previous constrained decoding algorithms, includ-
ing DBA (Post and Vilar, 2018a), NEUROLOGIC

2https://github.com/mtresearcher/
terminology_dataset.

https://github.com/mtresearcher/terminology_dataset
https://github.com/mtresearcher/terminology_dataset

(Lu et al., 2021) and also specialized training pro-
posed by Dinu et al. (2019). Following Dinu et al.
(2019), we report BLEU scores and term use rates,
computed as the percentage of times a given con-
straint term was generated in the output out of the
total number of constraint terms.

Results. Table 4 presents experimental results
with Dinu et al.’s model and Marian MT. We can
see that in either case, NEUROLOGICF outper-
forms all prior methods both in BLEU and term
coverage. Besides better generation quality and
constraint coverage, NEUROLOGICF also benefits
from its plug-and-play flexibility with any off-the-
shelf MT system compared to previous training-
based methods. Table 5 breaks down the model
performance by the number of constraint terms.
We see that NEUROLOGICF improves upon the
others, especially when the constraint is complex
with multiple constraint terms. (e.g., 96.5 vs. 93.7
from NEUROLOGIC in term coverage).

3.3 Table-to-text Generation

The table-to-text task aims to generate natural lan-
guage text conditioned on structured table data;
their applications include automatic generation of
weather/sports reports (Liang et al., 2009; Wise-
man et al., 2017) or dialogue responses (Wen
et al., 2016). Constrained generation algorithms
can be used to ensure that the output text is con-
sistent with the input structured data. We follow
the few-shot setup of Chen et al. (2020b) on the
E2ENLG (Dušek et al., 2018) dataset, where we
use randomly-sampled 0.1%, 0.5%, 1%, 5% of
training instances for finetuning.

Approach, Baselines, and Metrics. Following
Shen et al. (2019), we linearize the given table into
a string and finetune GPT-2 with given few-shot
examples. We first compare NEUROLOGICF with
three previous constrained decoding algorithms:
CBS (Anderson et al., 2017), GBS (Hokamp and
Liu, 2017), and NEUROLOGIC (Lu et al., 2021),
based on few-shot GPT-2 finetuned with 0.1% data.
Then we compare our approach, NEUROLOGICF

on top of GPT-2, with previous table-to-text meth-
ods, including TGen (Dušek and Jurčíček, 2016),
Template-GPT-2 (Chen et al., 2020a), KGPT (Chen
et al., 2020b), in multiple few-shot settings with
various numbers of training instances. We report
standard automatic metrics used in the E2ENLG
challenge, as well as information coverage– the

Decode Method NIST BLEU METEOR CIDEr ROUGE Coverage
Beam Search 3.82 42.8 32.6 10.8 57.8 73.6
CBS 6.50 42.3 36.4 13.0 54.3 91.6
GBS 6.26 40.7 36.7 12.9 54.2 94.1
NEUROLOGIC 6.95 47.6 38.9 16.3 58.7 97.6
NEUROLOGICF (greedy) 7.11 49.2 40.0 17.5 60.0 100.0
NEUROLOGICF (beam) 7.01 48.9 40.0 17.2 59.8 99.9
NEUROLOGICF (sample) 7.11 49.3 40.1 17.5 60.0 100.0

Table 6: Performance of different decoding methods
with few-shot GPT-2 finetuned on 0.1% E2ENLG data.
The best numbers are bolded and the second best ones
are underlined.

Method 0.1% 0.5% 1% 5%
TGen (Dušek and Jurčíček, 2016) 3.6 27.9 35.2 57.3
Template-GPT-2 (Chen et al., 2020a) 22.5 47.8 53.3 59.9
KGPT-Graph (Chen et al., 2020b) 39.8 53.3 55.1 61.5
KGPT-Seq (Chen et al., 2020b) 40.2 53.0 54.1 61.1
GPT-2 42.8 57.1 56.8 61.1
GPT-2 + NEUROLOGIC 47.6 56.9 58.0 62.9
GPT-2 + NEUROLOGICF (greedy) 49.2 58.0 58.4 63.4

Table 7: Few-shot results (BLEU-4) on E2ENLG test
set with 0.1%, 0.5%, 1%, 5% of training instances. The
best numbers are bolded and the second best ones are
underlined.

average percentage of given information that is
present in the generation.

Results. Table 6 presents results from varying
decoding algorithms based on few-shot GPT-2
finetuned with 0.1% of the data. NEUROLOGICF

substantially outperforms all previous methods
with respect to all metrics; it consistently im-
proves generation quality while achieving (al-
most) perfect constraint satisfaction. Previous work,
like CBS and GBS, improves constraint satisfac-
tion, but negatively affects the text quality, as
indicated by drops in BLEU and ROUGE. Ta-
ble 7 compares NEUROLOGICF on top of GPT-2
with previous table-to-text approaches. As before,
NEUROLOGICF outperforms all prior approaches
by a large margin, even if the latter ones lever-
age either specialized model architecture or addi-
tional pretraining on massive table-to-text corpora.
Additionally, Figure 3 compares the performance
(y-axis) of few-shot GPT-2 with NEUROLOGICF

(purple line), NEUROLOGIC (blue line), and con-
ventional beam search (black line) as a func-
tion of the varying amount of training instances
(x-axis). We find the relative gain brought by
NEUROLOGICF increases as we reduce the amount
of few-shot examples. Results above demonstrate
the promise of decoding algorithms to address un-
satisfying performance in few-shot scenarios due
to insufficient learning.

Decode Method Automatic Evaluation Human Evaluation
ROUGE BLEU METEOR CIDEr SPICE Coverage Grammar Fluency Meaningfulness Overall

CGMH (Miao et al., 2019) 28.8 2.0 18.0 5.5 21.5 18.3 2.28 2.34 2.11 2.02
TSMH (Zhang et al., 2020) 42.0 4.3 25.9 10.4 37.7 92.7 2.35 2.28 2.37 2.22
NEUROLOGIC (Lu et al., 2021) 38.8 11.2 24.5 18.0 41.7 90.6 2.78 2.71 2.49 2.51
NEUROLOGICF (greedy) 43.7 14.7 28.0 20.9 47.7 100.0 2.83 2.77 2.74 2.76
NEUROLOGICF (beam) 42.9 14.4 27.8 20.3 46.9 100.0 2.81 2.86 2.76 2.75
NEUROLOGICF (sample) 43.5 14.6 28.2 20.8 47.8 100.0 2.83 2.75 2.76 2.73

Table 8: Performance of different unsupervised decoding algorithms on interrogative question generation.

Figure 3: Performance (y-axis) of supervised GPT-2 on
E2ENLG, with a varying amount of training data for
supervision (x-axis). The purple, blue, and black line
denote decoding with NEUROLOGICF, NEUROLOGIC
and conventional beam search respectively.

3.4 Constrained Question Generation

Despite the success of supervised techniques in nat-
ural language generation, it needs to be trained with
massive task-specific data, which is non-trivial to
acquire. We investigate a zero-shot text generation
task proposed by Zhang et al. (2020): constrained
question generation, where no training data is avail-
able. Given a set of keywords (e.g., Nevada, desert,
border), the task is to use an off-the-self language
model to generate an interrogative question con-
taining given keywords (e.g., “What is the name of
the desert near the border of Nevada?”). Two types
of constraints are enforced for this task: 1) keyword
constraints - the output question must include all
the keywords provided, and 2) syntactic constraints
- the output question must be in the interrogative
form, the first word must be wh- question words,
and the second or third word must be auxiliary
verbs or copula words.

Approach, Baselines, and Metrics. We lever-
age off-the-shelf language model GPT-2 and com-
pare NEUROLOGICF with three previous con-
strained decoding methods, CGMH (Miao et al.,
2019), TSMH (Zhang et al., 2020) and NEURO-
LOGIC (Lu et al., 2021). CGMH and TSMH are
two Metropolis-Hastings sampling-based decoding
algorithms that have shown strong performance
in unsupervised constrained generation. For auto-
matic evaluation, we report standard generation
metrics and keyword Coverage similar to previ-

(a) (b)

82 4 6
10

12
2

4
6 8

10

12

3
5 7

9
11

15
13

3

5
7

9
1113 15

##

Figure 4: Likelihood (y-axis) vs. number of unique 3-
grams (x-axis) using supervised GPT-2 on RocStories.
Figure (a) denotes decoding with beam search, with a
varying amount of beam size. Figure (b) denotes decod-
ing with top-k sampling, with a varying amount of k
value. The brown and blue line denotes with and with-
out AFesque heuristics separately.

ous task COMMONGEN. For the human evaluation,
we sample 100 test examples and employ workers
from AMT to evaluate the generated interrogative
questions. Workers are given a set of keywords
and model generation. They are asked to evaluate
the generation based on 3 individual qualities (i.e.,
grammar, fluency, meaningfulness) and provide an
overall quality score, using the 3-point Likert scale.
Each example is averaged across 3 workers. We
include the human evaluation template in Figure 6
of the Appendix A.

Results. Table 8 presents comparisons across dif-
ferent decoding methods based on off-the-shelf lan-
guage models. We can see that NEUROLOGICF

outperforms all previous methods with respect to
both automatic and manual metrics; it remarkably
enhances the generation quality while achieves per-
fect constraint satisfaction. The difference between
NEUROLOGIC and NEUROLOGICF is particularly
large compared to other tasks. The search problem
is much harder here, due to the lack of supervision
and complex logical constraint involving both key-
words and syntax. Results above demonstrate the
effectiveness of NEUROLOGICF in tackling more
challenging constrained generation problems.

Decode Method Fluency Diversity Human Eval
PPL BLEU-1 BLEU-2 Uniq. 3-gram Uniq. 4-gram Grammar Fluency Coherence Interest Overall

beam search 2.24 33.7 16.5 34.09k 41.91k 2.81 2.50 2.46 2.27 2.32
beam search + AFesque (greedy) 2.11 34.3 16.7 34.94k 43.02k 2.94 2.71 2.56 2.50 2.57
beam search + AFesque (beam) 2.14 34.4 16.8 35.03k 43.12k 2.94 2.72 2.62 2.61 2.63
beam search + AFesque (sample) 2.16 34.4 16.7 35.41k 43.64k 2.92 2.71 2.59 2.52 2.57
top-k sample 4.01 31.4 13.9 48.36k 56.62k 2.69 2.38 2.23 2.30 2.15
top-k sample + AFesque (greedy) 3.68 32.1 14.3 48.44k 56.63k 2.88 2.57 2.48 2.49 2.47
top-k sample + AFesque (beam) 3.75 32.2 14.4 48.27k 56.36k 2.84 2.49 2.39 2.40 2.34
top-k sample + AFesque (sample) 3.70 32.0 14.2 48.04k 56.15k 2.84 2.55 2.47 2.48 2.44

Table 9: Performance of different decoding algorithms on RocStories test set.

4 Experiments: Unconstrained
Generation

So far we have experimented with constrained
text generation, but here we demonstrate that
NEUROLOGICF decoding can also improve un-
constrained generation. Specifically, we investigate
whether AFesque decoding with our unconstrained
lookahead heuristic (Equation 7) can (i) improve
beam search, which typically struggles in open-
ended settings (Holtzman et al., 2020; Welleck
et al., 2019b), (ii) improve sampling algorithms
that are commonly used in open-ended generation.

4.1 Commonsense Story Generation
We investigate story generation with RocStories
(Mostafazadeh et al., 2016). Given the first sentence
as a prompt x, the task is to generate the rest of
story continuation y.

Approach, Baselines and Metrics. We consider
storytelling as a conditional generation task, and
finetune GPT-2 as a sequence-to-sequence model.

We apply AFesque decoding with our uncon-
strained lookahead heuristic (Equation 7) to (i)
beam search, the setting used so far in the experi-
ments, and (ii) top-k sampling (Fan et al., 2018), a
commonly used sampling algorithm in open-ended
generation. For top-k sampling, we use the heuristic
to adjust the probability scores, then renormalize.

For automatic evaluation, besides commonly
used automatic metrics for storytelling, including
perplexity and BLEU, we also report unique n-
grams as a measure for diversity. For the human
evaluation, we sample 100 stories from the test
set and we employ workers from AMT to evalu-
ate the model generations. Workers are given the
first sentence of the story (i.e., prompt), and the
model-generated continuation of the story. They
are asked to evaluate the continuation of the story
on 4 individual qualities (i.e., grammar, fluency,
story flow, interestingness) and provide an overall

quality score, using the 3-point Likert scale. Each
example is averaged across 3 workers. We include
the human evaluation template in Figure 7 of the
Appendix A.

Results. Table 9 presents the results of beam
search and top-k sampling with and without
AFesque heuristics. We can see that AFesque
heuristics enable both beam search and top-k sam-
pling to generate more fluent, coherent and interest-
ing stories. For beam search, our AFesque heuris-
tic not only enhances generation quality– e.g. im-
proving human evaluation scores from 2.32 to 2.63–
but also boosts generation diversity, as reflected
by the number of unique n-grams. For top-k sam-
pling, A* heuristics also improves generation qual-
ity, while maintaining comparable diversity. We no-
tice that beam lookahead works the best for beam
search, and greedy lookahead works the best for
top-k sampling. We suspect that beam lookahead
gives the most accurate estimate of the future path
that beam search is likely to reach, while the greedy
lookahead provides an estimate that is lower than
what obtained by beam search, which may better
resemble a continuation from top-k sampling.

Ablations. We study the effect of AFesque de-
coding with different decoding hyperparameters:
beam size in beam search and k value in top-k
sampling. Figure 4 plots the fluency (measured by
likelihood) versus diversity (measured by unique
3-grams) for generations with various beam sizes
or k values. Ideally, we want generations to be both
fluent and diverse, centering around the top-right
center. However, we observe a fluency and diversity
tradeoff in practice. Interestingly, we observe that
AFesque decoding flattens this trend and results in
larger area under the curve. The effect is especially
obvious for beam search. The results above demon-
strate that AFesque decoding can guide generation
towards a more favorable output space that cannot
be reached with conventional decoding methods,

regardless of decoding hyperparameters.

5 Related Work

A* search in NLP. Many classical NLP prob-
lems (e.g., parsing, text alignment) can be seen
as structured prediction subject to a set of task-
specific constraints. For many such problems, A*
search has been used effectively (Och et al., 2001;
Haghighi et al., 2007; Hopkins and Langmead,
2009; Meister et al., 2020). For example, Klein
and Manning (2003); Zhang and Gildea (2006);
Auli and Lopez (2011); Lee et al. (2016) have used
it in the context of parsing. Similar approaches are
used for finding high-probability alignments (Naim
et al., 2013). Despite these applications, applying
informed heuristic search to text generation with
autoregressive language models has been under-
explored, which is the focus of this work.

Decoding strategies for text generation. The
rise of autoregressive language models like
GPT (Radford et al., 2018) has inspired a flurry of
work on decoding strategies (Post and Vilar, 2018a;
Ippolito et al., 2019; Zheng et al., 2020; Leblond
et al., 2021; West et al., 2021). These works often
focus on incorporating factors like diversity (Ip-
polito et al., 2019), fluency (Holtzman et al., 2020)
or constraints (Anderson et al., 2017; Hokamp and
Liu, 2017; Post and Vilar, 2018b; Miao et al., 2019;
Welleck et al., 2019a; Zhang et al., 2020; Qin et al.,
2020; Lu et al., 2021). Among constrained decod-
ing methods, previous works such as constrained
beam search (Anderson et al., 2017) and grid beam
search (Hokamp and Liu, 2017), have worked on
extending beam search to satisfy lexical constraints
during generation.

Other works have focused on the mismatch be-
tween monotonic decoding and satisfying con-
straints that may depend on a full generation.
Miao et al. (2019) propose a sampling-based
conditional generation method using Metropolis-
Hastings sampling (CGMH), where the constrained
words are inserted/deleted/edited by the Metropolis-
Hastings scheme, allowing a full generation to be
edited towards desired properties. Welleck et al.
(2019a) develop a tree-based constrained text gen-
eration, which recursively generates text in a non-
monotonic order given constraint tokens, ensur-
ing constraints are satisfied. Zhang et al. (2020)
proposes tree search enhanced MCMC that han-
dles combinatorial constraints (TSMH). Qin et al.
(2020) instead casts constrained decoding as a con-

tinuous optimization problem that permits gradient-
based updates. West et al. (2021) encodes con-
straints as generated contexts which models con-
dition on to encourage satisfaction. Compared to
these past works, NEUROLOGIC AFesque explic-
itly samples future text to estimate viability of dif-
ferent paths towards satisfying constraints. Our ap-
proach is based on Lu et al. (2021), which incor-
porates constraints in Conjunctive Normal Form
(CNF), but we extend this into the future with our
lookahead heuristics.

6 Conclusion

Inspired by the A* search algorithm, we introduce
NEUROLOGIC AFesque decoding, which brings
A*-like heuristic estimates of the future to common
left-to-right decoding algorithms for neural text
generation. NEUROLOGIC AFesque’s lookahead
heuristics improve over existing decoding meth-
ods (e.g., NEUROLOGIC, beam, greedy, sample
decoding methods) in both constrained and uncon-
strained settings across a wide spectrum of tasks.
Our work demonstrates the promise of moving be-
yond the current paradigm of unidirectional de-
coding for text generation, by taking bidirectional
information from both the past and future into ac-
count to generate more globally compatible text.

Acknowledgment

This work was supported in part by Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) (funding reference number 401233309),
DARPA MCS program through NIWC Pacific
(N66001-19-2-4031), Google Cloud Compute, and
Allen Institute for AI, Microsoft PhD Fellowship.

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2016. Spice: Semantic proposi-
tional image caption evaluation. In European confer-
ence on computer vision, pages 382–398. Springer.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
936–945, Copenhagen, Denmark. Association for
Computational Linguistics.

Michael Auli and Adam Lopez. 2011. Efficient CCG
parsing: A* versus adaptive supertagging. In Pro-
ceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human

https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://aclanthology.org/P11-1158
https://aclanthology.org/P11-1158

Language Technologies, pages 1577–1585, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (WMT17). In Proceedings of the Sec-
ond Conference on Machine Translation, pages 169–
214, Copenhagen, Denmark. Association for Com-
putational Linguistics.

T. Brown, B. Mann, Nick Ryder, Melanie Subbiah,
J. Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, G. Krüger,
T. Henighan, R. Child, Aditya Ramesh, D. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, E. Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, J. Clark, Christopher Berner, Sam
McCandlish, A. Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems (NeurIPS).

Rajen Chatterjee, Matteo Negri, Marco Turchi, Mar-
cello Federico, Lucia Specia, and Frédéric Blain.
2017. Guiding neural machine translation decoding
with external knowledge. In Proceedings of the Sec-
ond Conference on Machine Translation, pages 157–
168, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020a. Logical natural lan-
guage generation from open-domain tables. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7929–
7942, Online. Association for Computational Lin-
guistics.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020b. KGPT: Knowledge-grounded pre-
training for data-to-text generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8635–8648, Online. Association for Computational
Linguistics.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan
May, and Kevin Knight. 2018. Recurrent neural net-
works as weighted language recognizers. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume

1 (Long Papers), pages 2261–2271, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: A simple approach to controlled text generation.
In International Conference on Learning Represen-
tations.

Georgiana Dinu, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3063–3068, Florence, Italy. Association for Compu-
tational Linguistics.

Ondřej Dušek and Filip Jurčíček. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
45–51, Berlin, Germany. Association for Computa-
tional Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG Challenge. In
Proc. of the 11th International Conference on Nat-
ural Language Generation, pages 322–328, Tilburg,
The Netherlands. Association for Computational
Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Aria Haghighi, John DeNero, and Dan Klein. 2007.
Approximate factoring for A* search. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 412–419, Rochester, New York.
Association for Computational Linguistics.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael.
1968. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Sys-
tems Science and Cybernetics, 4(2):100–107.

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and
Bill Byrne. 2018. Neural machine translation decod-
ing with terminology constraints. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 506–512, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid

https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/W17-4716
https://doi.org/10.18653/v1/W17-4716
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.acl-main.708
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/N18-1205
https://doi.org/10.18653/v1/N18-1205
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.18653/v1/P16-2008
https://doi.org/10.18653/v1/P16-2008
https://doi.org/10.18653/v1/P16-2008
http://arxiv.org/abs/1810.01170
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://aclanthology.org/N07-1052
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.18653/v1/N18-2081
https://doi.org/10.18653/v1/N18-2081
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141

beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Mark Hopkins and Greg Langmead. 2009. Cube prun-
ing as heuristic search. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 62–71.

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick
Xia, Tongfei Chen, Matt Post, and Benjamin
Van Durme. 2019. Improved lexically constrained
decoding for translation and monolingual rewriting.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 839–850,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In International Con-
ference on Machine Learning, pages 1587–1596.
PMLR.

Daphne Ippolito, Reno Kriz, João Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Com-
parison of diverse decoding methods from condi-
tional language models. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3752–3762.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, André F. T. Mar-
tins, and Alexandra Birch. 2018. Marian: Fast neu-
ral machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact Viterbi parse selection. In Pro-
ceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 119–
126.

Richard E Korf. 1985. Depth-first iterative-deepening:
An optimal admissible tree search. Artificial intelli-
gence, 27(1):97–109.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre,
Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals.
2021. Machine translation decoding beyond beam
search. arXiv preprint arXiv:2104.05336.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global neural CCG parsing with optimality guaran-
tees. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2366–2376, Austin, Texas. Association
for Computational Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP.

Bill Yuchen Lin, Ming Shen, Wangchunshu Zhou, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. Commongen: A constrained text gener-
ation challenge for generative commonsense reason-
ing. In Findings of EMNLP.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 150–157.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288–4299,
Online. Association for Computational Linguistics.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020.
Best-first beam search. Transactions of the Associa-
tion for Computational Linguistics, 8:795–809.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. Cgmh: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6834–6842.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Iftekhar Naim, Daniel Gildea, Walter Lasecki, and Jef-
frey P Bigham. 2013. Text alignment for real-time
crowd captioning. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 201–210.

https://doi.org/10.18653/v1/P17-1141
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://aclanthology.org/N03-1016
https://aclanthology.org/N03-1016
https://doi.org/10.18653/v1/D16-1262
https://doi.org/10.18653/v1/D16-1262
https://aclanthology.org/P09-1011
https://aclanthology.org/P09-1011
https://aclanthology.org/N03-1020
https://aclanthology.org/N03-1020
https://aclanthology.org/N03-1020
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098

Franz Josef Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient a* search algorithm for statis-
tical machine translation. In Proceedings of the
ACL 2001 Workshop on Data-Driven Methods in
Machine Translation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Judea Pearl. 1984. Heuristics - intelligent search strate-
gies for computer problem solving. In Addison-
Wesley series in artificial intelligence.

Ira Pohl. 1970. First Results on the Effect of Error in
Heuristic Search.

Matt Post and David Vilar. 2018a. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Matt Post and David Vilar. 2018b. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena D Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Backpropagation-
based decoding for unsupervised counterfactual and
abductive reasoning. In EMNLP.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan
Klein. 2019. Pragmatically informative text gen-
eration. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4060–4067, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and
Kyunghyun Cho. 2019a. Non-monotonic sequential
text generation. In International Conference on Ma-
chine Learning, pages 6716–6726. PMLR.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019b.
Neural text generation with unlikelihood training. In
International Conference on Learning Representa-
tions.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Lina M. Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016. Multi-domain
neural network language generation for spoken di-
alogue systems. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 120–129, San Diego, Cal-
ifornia. Association for Computational Linguistics.

Peter West, Ximing Lu, Ari Holtzman, Chandra Bha-
gavatula, Jena D. Hwang, and Yejin Choi. 2021.
Reflective decoding: Beyond unidirectional gen-
eration with off-the-shelf language models. In
ACL/IJCNLP.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing.

Hao Zhang and Daniel Gildea. 2006. Efficient search
for inversion transduction grammar. In Proceedings
of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 224–231.

Maosen Zhang, Nan Jiang, Lei Li, and Yexiang Xue.
2020. Language generation via combinatorial con-
straint satisfaction: A tree search enhanced Monte-
Carlo approach. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1286–1298, Online. Association for Computational
Linguistics.

Renjie Zheng, Mingbo Ma, Baigong Zheng, Kaibo Liu,
and Liang Huang. 2020. Opportunistic decoding
with timely correction for simultaneous translation.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 437–
442.

https://books.google.co.jp/books?id=6TcKcgAACAAJ
https://books.google.co.jp/books?id=6TcKcgAACAAJ
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N19-1410
https://doi.org/10.18653/v1/N19-1410
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015
https://aclanthology.org/D17-1239
https://doi.org/10.18653/v1/2020.findings-emnlp.115
https://doi.org/10.18653/v1/2020.findings-emnlp.115
https://doi.org/10.18653/v1/2020.findings-emnlp.115

A Human Evaluation

We include screenshots of the human evaluation
templates for CommonGen (Figure 5), Interroga-
tive Sentence Generation (Figure 6), and RocSto-
ries (Figure 7) tasks.

Figure 5: Human evaluation template for the Constrained Commonsense Generation task.

Figure 6: Human evaluation template for the Interrogative Sentence Generation task.

Figure 7: Human evaluation template for the RocStories task.

Quark: Controllable Text Generation
with Reinforced [Un]learning

Ximing Lu�~ Sean Welleck�~⇤ Jack Hessel~⇤ Liwei Jiang�~

Lianhui Qin� Peter West� Prithviraj Ammanabrolu~ Yejin Choi�~
~Allen Institute for Artificial Intelligence

�Paul G. Allen School of Computer Science, University of Washington
{ximinglu, jackh, raja}@allenai.org

{wellecks, lwjiang, lianhuiq, pawest, yejin}@cs.washington.edu

https://github.com/GXimingLu/Quark

Abstract

Large-scale language models often learn behaviors that are misaligned with user
expectations. Generated text may contain offensive or toxic language, contain
significant repetition, or be of a different sentiment than desired by the user. We
consider the task of unlearning these misalignments by fine-tuning the language
model on signals of what not to do. We introduce Quantized Reward Konditioning
(Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted
property, while not straying too far from the original model. Quark alternates
between (i) collecting samples with the current language model, (ii) sorting them
into quantiles based on reward, with each quantile identified by a reward token
prepended to the language model’s input, and (iii) using a standard language
modeling loss on samples from each quantile conditioned on its reward token,
while remaining nearby the original language model via a KL-divergence penalty.
By conditioning on a high-reward token at generation time, the model generates
text that exhibits less of the unwanted property. For unlearning toxicity, negative
sentiment, and repetition, our experiments show that Quark outperforms both strong
baselines and state-of-the-art reinforcement learning methods like PPO [66], while
relying only on standard language modeling primitives.

1 Introduction

Large neural language models trained on an enormous amount of web text have excelled at numerous
tasks [58, 87, 10]. They provide an effective interface for few-shot learning [8], show impressive
natural-language understanding capabilities [47], and, in some contexts, their generations can be
indistinguishable from human-authored text [11].

However, these same language models often exhibit undesirable behaviors, as they are usually trained
to simply maximize the likelihood of their raw pre-training data. For example, models sometimes
generate toxic text that reflects pernicious social biases [18, 69], or generate repetitive and dull
language [79, 38, 25]. Undesirable behaviors are diverse and hard to avoid, control, or even specify a
priori; we thus argue that it is critical to investigate ways to unlearn undesirable behaviors post hoc,
while maintaining capacity for generating coherent and fluent language.

Supervised approaches for unlearning pose challenges. One option is to curate and train on a corpus
that encodes desirable behavior, with the hope that additional maximum likelihood training will shape

⇤equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
5.

13
63

6v
2

 [c
s.C

L]
 1

6
N

ov
 2

02
2

https://github.com/GXimingLu/Quark

you are @&! [R1] Hello,

[R2]

how are you?

Exploration Quantization

Learning

Sample text from the current language model
Sort the data pool by reward to form
reward token quantiles

Train on (reward token+prompt, generation)
pairs plus a KL-divergence penalty

High

Low

Hello,
you are @&!

Reward

Score the text with a reward function and add to a data pool

Language
Model

.94

you are @&!
Data Pool

Data Pool

how are you?

you are @&!

you’re mean

[R3]

[R2]

[R1]

you’re mean

[R3] how are you?

.01

Reward Token Quantile

Hello,

Hello,

Hello,

Hello,

Hello,

Hello,

Hello,

[R3]

Reward
Token Prompt

how are you?

Generations

Figure 1: Quantized Reward Konditioning (Quark) is an online, off-policy reinforcement learning (RL)
algorithm used to (un)learn properties from language models via three iterative stages: exploration,
quantization, and learning.

the model’s distribution more favorably. However, collecting data that accurately captures desired
characteristics (e.g., non-toxic, non-degenerate texts) is difficult (if not impossible) [40]. Moreover,
models may overfit to the newly collected corpora [40, 32] and lose desirable characteristics, e.g., few
shot learning capacity over general domains. Another option is to build a detector of the undesirable
behavior, e.g., by labelling model outputs. However, it is not clear how to adjust the model so that it
only generates text that the detector prefers: since detectors score full text samples from the model
rather than providing token-by-token feedback, they are not directly differentiable (e.g., toxicity
scores) [54].

Dynamically (un)learning from sentence-level, scalar feedback is perhaps better suited to the rein-
forcement learning (RL) paradigm. In NLP, RL has been used to optimize scalar metrics in the form
of rewards [54, 60, 83]. Recently [51] used Proximal Policy Optimization (PPO) [66] to optimize a
175B parameter model via a learned reward model, while constraining the model to remain close to
the original with a KL-divergence penalty. However, as (deep) RL is highly sensitive to variance in
the reward function [1, 41], these methods rely on additional models – often doubling the number of
learnable parameters – and specialized heuristics to stabilize training.

We introduce Quantized Reward Konditioning (Quark), an algorithm for reward-based (un)learning with
language models. Quark builds upon insights from three prior works: the Decision Transformer [9],
LM tuning with PPO [91], and control tokens [28]. During training, Quark alternates between (i)
collecting samples with the current language model, (ii) sorting them into quantiles based on reward,
with each quantile identified by a reward token prepended to the language model’s input, and (iii)
maximizing the likelihood of the samples from each reward quantile conditioned on its reward token,
while remaining nearby the original language model via a KL-divergence penalty. In contrast to
strong contemporary RL methods that stabilize training with an additional parameterized model
and specialized optimization heuristics, Quark’s training relies only on standard language modeling
primitives. Experiments across three tasks demonstrate that Quark maintains pre-training abilities
while unlearning undesired behaviors more stably than alternative methods.

2 Quark: Quantized Reward Konditioning

Starting from a pretrained language model, Quantized Reward Konditioning (Quark) alternates between
three steps, illustrated in Figure 1:

• Exploration: sample text with the current model, evaluate its reward, and store in a data pool.
• Quantization: sort the data pool by reward and partition it into quantiles.
• Learning: update the language model using samples from each quantile.

By sampling from high reward quantiles during exploration and using a KL-divergence penalty
during learning, Quark iteratively improves the language model by steering its distribution towards

2

Algorithm 1 Quantized Reward Konditioning (Quark)
input Initial policy p0, prompts X , reward r(·), KL weight �, number of quantiles K
1: Make a copy p✓ of initial policy p0; and Initialize data pool D . Initialization
2: for iteration = 1, 2, . . . , N do
3: for xi 2 X do
4: Sample generation yi ⇠ p✓(·|xi, rK) . Exploration
5: Add

�
xi, yi, r(xi, yi)

�
into data pool D

6: D̃i quantize(D;K) . Quantization
7: for step = 1, 2, . . . ,M do
8: Draw a batch of data

�
(xi, yi, rki)

from quantized data pool D̃i . Learning

9: Compute the objectives in Eq. 2
10: Update the policy parameters ✓ via gradient descent

increasingly high-reward samples, while not straying too far from the original model. Quark is
summarized in Algorithm 1; it can be implemented succinctly using standard language modeling
libraries, see Appendix C.

Initialization. Quark begins with a pretrained language model p0(y|x), a set of training prompts X
and a reward function r(x, y)! R. Here x = (x1, . . . , x|x|) and y = (y1, . . . , y|y|) are sequences
of tokens from a vocabulary V . Quark initializes a datapool of (input, output, reward) examples by
sampling2 from p0 conditioned on the training prompts, and scoring them with the reward function,

D0 = {(x, y, r(x, y)) | y ⇠ p0(·|x), for all x 2 X)}. (1)

If available, the datapool can instead be initialized with any (x, y) pairs (e.g., from a supervised
dataset). Quark then proceeds iteratively, updating a copy of the pretrained language model, p✓, by
alternating between exploration, quantization and learning. We detail quantization first.

Quantization. Quark quantizes each example in the datapool based on how high its reward is
compared to others in the data pool. Quark sorts the current iteration’s datapool in order of increasing
reward, and partitions the sorted pool into equally sized quantiles, D1, . . . ,DK . Each sample (x, y)
is now part of a quantile that is identified by a reward token rk with k 2 {1, . . . ,K}. For example, in
Figure 1 the non-toxic generation how are you? is placed in the highest-reward quantile, identified by
r3, while the toxic generation, you are *@&!, is placed in the lowest-reward quantile r1.

Learning. For learning, Quark trains on the quantized datapool D using a standard conditional
language modeling objective – maximizing likelihood – along with a KL-penalty to keep the model
from deviating too far from the original:

max
✓

Ek⇠U(1,K)E(x,y)⇠Dk


log p✓(y|x, rk)� �

TX

t=1

KL (p0(·|y<t, x)kp✓(·|y<t, x, rk))

�
, (2)

where each KL term is
P

yt2V p0(yt) log
p0(yt)
p✓(yt)

(omitting the conditioned terms). Naturally, Quark
supports other penalties developed for language modeling, e.g., entropy [43] or unlikelihood [79].

Exploration. During exploration, Quark adds new generations to the data pool by sampling from
the model conditioned on the highest-reward token,

D D [{(x, y, r(x, y)) | y ⇠ p✓(·|x, rK), for all x 2 X}, (3)

where y ⇠ p✓(·|x, rK) means sampling from the current model p✓, with the reward token rK
prepended to the training input x. Intuitively, this step explores the most promising regions of the
distribution by querying the current model for what it expects to be high reward completions.

Evaluation. At test time, we condition the language model on the highest reward token, y ⇠
p✓(·|x, rK), and evaluate the resulting samples.

2Any decoding method can be used, e.g., greedy search, beam search, nucleus sampling [25].

3

Model
In-domain (REALTOXICITYPROMPTS) Out-of-domain (WRITINGPROMPTS)

Toxicity (#) Fluency (#) Diversity (") Toxicity (#) Fluency (#) Diversity (")
avg. max. prob. output ppl dist-2 dist-3 avg. max. prob. output ppl dist-2 dist-3

GPT2 [57] 0.527 0.520 11.31 0.85 0.85 0.572 0.610 12.99 0.82 0.85

PPLM [12] 0.520 0.518 32.58 0.86 0.86 0.544 0.590 36.20 0.87 0.86
GeDi [32] 0.363 0.217 60.03 0.84 0.83 0.261 0.050 91.16 0.86 0.82
DEXPERTS [40] 0.314 0.128 32.41 0.84 0.84 0.343 0.156 42.53 0.86 0.85
DAPT [21] 0.428 0.360 31.21 0.84 0.84 0.442 0.363 38.11 0.86 0.85
PPO [71] 0.218 0.044 14.27 0.80 0.84 0.234 0.048 15.49 0.81 0.84

Quark 0.196 0.035 12.47 0.80 0.84 0.193 0.018 14.49 0.82 0.85

Table 1: Automatic evaluation results of unlearning toxicity experiments. Baseline results (except
PPO) are from [40].

Ours vs. GPT2 Ours vs. PPLM Ours vs. GeDi Ours vs. DEXPERT Ours vs. DAPT Ours vs. PPO
In-domain (REALTOXICITYPROMPTS)

Less Toxic 0.21 0.07 0.20 0.08 0.15 0.06 0.14 0.10 0.12 0.12 0.12 0.12
More Topical 0.22 0.14 0.23 0.14 0.21 0.13 0.18 0.18 0.20 0.16 0.22 0.14
More Fluent 0.26 0.19 0.27 0.17 0.29 0.15 0.26 0.21 0.23 0.18 0.28 0.18

Out-of-domain (WRITINGPROMPTS)
Less Toxic 0.18 0.06 0.25 0.08 0.16 0.11 0.16 0.07 0.16 0.10 0.15 0.08
More Topical 0.20 0.20 0.31 0.23 0.34 0.19 0.36 0.19 0.29 0.27 0.32 0.17
More Fluent 0.26 0.21 0.31 0.23 0.41 0.14 0.38 0.21 0.33 0.23 0.32 0.20

Table 2: Human evaluation results of unlearning toxicity experiments, comparing the percentage of
texts rated as less toxic, more topical, and more fluent as generated by Quark and other baselines.

Relationship to prior work. Quantized Reward Konditioning builds upon three disjoint concepts from
previous work in reinforcement learning and conditional language modeling.

(1) Inspired by PPO [91], we encourage our model to stay close to a reference model using a KL-
divergence penalty. The penalty in [91] approximates KL-divergence at the sequence level through a
reward penalty, r̃(x) = r(x)� � log p✓(x)

p0(x)
, while we use a differentiable loss that exactly computes

the per-step KL divergence (Eq.2); this may contribute to ease of optimization. Unlike PPO, we
do not control for the variance of the reward function by subtracting off a baseline value function:
instead, we quantize. This modification also allows us to optimize language model log probabilities
directly without the additional (sometimes finicky) hyperparameters of PPO, including policy step
clipping radius, and adaptive KL schedules.

(2) Inspired by the Decision Transformer [9] which frames reinforcement learning as next-token
prediction, we train a model capable of conditioning on the desired reward of the trajectory, prior to
observing it, i.e., our reward token appears in the input of p✓(y|x, rk). Different from the decision
transformer, we (i) have an exploration step and (ii) we don’t attempt to model discounted reward
over multiple timesteps, and instead only consider a one-step bandit environment.

(3) Inspired by control codes [28] we use learned embeddings as a light-weight representation of
reward. Each reward quantile is encoded via an embedding lookup, following past work on style and
content controls [28], or prompt/prefix encodings that can be tuned to solve tasks efficiently [39, 37].
Unlike prior work, our control codes are iteratively updated to guide unlearning.

3 Experiments

In this section, we show that Quark can effectively unlearn undesirable behaviors from neural language
models, including toxicity, repetition, and unwanted sentiment. Following the setup of previous works
[40, 79, 73], we use GPT2-large [57] as the initial policy p0 for toxicity and sentiment experiments,
and GPT2-base for repetition experiment.

3.1 Unlearning Toxicity from Language Models

Language models are susceptible to generating offensive completions that reflect false social biases,
even when prompted with seemingly innocuous text [18]. We consider unlearning toxicity from GPT-

4

2 on the REALTOXICITYPROMPTS benchmark, which contains prompts known to elicit problematic
generations, e.g., “I cant believe the people of...". We show that using Quark with a commercial
toxicity API as the reward substantially reduces the chance of generating toxic text as measured by
both automatic metrics and human judgments, without otherwise affecting generation quality.

Experimental setup. REALTOXICITYPROMPTS consists of 100k prompts designed to elicit toxic
generations. We follow the experimental setup of Liu et al. [40]. During training, we use 85K
prompts from the train set; for evaluation, we use the same 10K non-toxic test prompts used by [40],
and generate using nucleus sampling with p = 0.9. Additionally, we also conduct out-of-domain
evaluation with the WRITINGPROMPTS dataset [15], which is created for creative writing (i.e., story
generation). We use the Perspective API as a reward function, which provides a score between 1
(non-toxic) and 0 (toxic)3. We use K = 5 quantiles.

Baselines and evaluation metrics. We include previously reported baselines from [40], including
GPT-2 (i.e., the p0 model), PPLM [12], GEDI [32], DAPT [21], and DEXPERTS [40]. Additionally,
as a representative state-of-the-art RL method, we implement PPO with the KL-penalty as in [91, 51];
see subsection B.1 for details.

Following [40], maximum toxicity is measured as the average maximum toxicity over 25 text gen-
erations, and the empirical toxic probability of at least one of any 25 generations being toxic, both
of which are judged by Perspective API. To evaluate language quality as a proxy for how much
the model deviates from the original model, we report fluency as the perplexity of generated output
according to a larger off-the-shelf GPT2-XL model, and diversity as the count of unique n-grams
normalized by the length of text. Finally, we conduct a pairwise human evaluation to compare
outputs from Quark to each baseline, based on the perceived level of toxicity (which one is less rude or
disrespectful), topicality (which one is more natural, relevant, and logical), and fluency (which one is
more grammatically correct and coherent); human evaluation details are in Appendix A.

Results. As shown in Table 1, Quark reduces the rate of toxic completions substantially compared
to all baselines, in both in-domain and out-of-domain settings. While prior detoxification methods
generally sacrifice language quality, Quark reduces toxicity while maintaining a similar level of fluency
and diversity compared to vanilla GPT-2. Compared to PPO, Quark achieves better performance,
with less parameters and shorter training time. Additionally, human evaluation (Table 2) shows that
generations from Quark are rated as less toxic, more topical and more fluent compared to all other
baselines, for both the in-domain and the out-of-domain settings. The results above demonstrate the
promise of Quark for unlearning toxicity, which could enable broader use of the resulting detoxified
language model. Additional qualitative results are in Appendix D.

3.2 Steering Away from Unwanted Sentiment of Generated Texts

Next, we explore Quark’s capacity to control the sentiment polarity of text generated from a language
model [74, 12, 40]. This task, which is well-studied in controllable generation, is often practically
motivated by the goal of building chat bots that do not simply output probable language, but also
discourse acts that echo a particular emotion or sentiment [63, 36, 78].

Experimental setup. We aim to steer the model to generate continuations with either positive or
negative sentiment, while prompted with the opposite sentiment (negative or positive, respectively).
We follow the experimental setup of [40], which uses 100K prompts from the OpenWebText Corpus
(OWT) [19]. During training, we use 85K prompts from the training set. During evaluation, we
evaluate on three sets of test prompts: 5K neutral prompts, 2.5K positive prompts and 2.5K negative
prompts. We use the sentiment analysis classifier (DistillBERT [62]) trained on SST-2 dataset[70]
from HuggingFace [81] as the training reward, which provides a sentiment score between 1(positive)
and 0 (negative)4. We use K = 5 quantiles.

3The Perspective API is a service provided by Google that defines a “toxic" comment as one that is
“rude, disrespectful, or unreasonable ... that is likely to make one leave a discussion” https://github.com/
conversationai/perspectiveapi. Queries were made from Jan 2022 – May 2022, and reflect the version
being hosted at the time. The API is itself imperfect and reflects some social biases [26, 46, 64]. See section 7
for further discussion.

4https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

5

https://github.com/conversationai/perspectiveapi
https://github.com/conversationai/perspectiveapi
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

Model
Sentiment to Unlearn: NEGATIVE Sentiment to Unlearn: POSITIVE

% Positive (") Fluency (#) Diversity (") % Positive (#) Fluency (#) Diversity (")
negative neutral output ppl dist-2 dist-3 positive neutral output ppl dist-2 dist-3prompt prompt prompt prompt

GPT2 [57] 0.00 50.02 11.42 0.85 0.85 99.08 50.02 11.42 0.84 0.84

PPLM [12] 8.72 52.68 142.1 0.86 0.85 89.74 39.05 181.7 0.87 0.86
CTRL [29] 18.88 61.81 43.79 0.83 0.86 79.05 37.63 35.94 0.83 0.86
GeDi [32] 26.80 86.01 58.41 0.80 0.79 39.57 8.73 84.11 0.84 0.82
DEXPERTS [40] 36.42 94.46 25.83 0.84 0.84 35.99 3.77 45.91 0.84 0.83
DAPT [21] 14.17 77.24 30.52 0.83 0.84 87.43 33.28 32.86 0.85 0.84
PPO [71] 43.13 94.10 15.16 0.80 0.84 32.22 3.65 15.54 0.81 0.84

Quark 46.55 95.00 14.54 0.80 0.84 27.50 2.75 14.72 0.80 0.84

Table 3: Automatic evaluation results of unlearning sentiment experiments. Baseline results (except
PPO) are from [40].

Ours vs. GPT2 Ours vs. PPO Ours vs. CTRL Ours vs. GeDi Ours vs. DEXPERT Ours vs. DAPT
Sentiment to Unlearn: NEGATIVE

More Positive 0.58 0.04 0.16 0.06 0.46 0.12 0.38 0.14 0.32 0.18 0.48 0.12
More Topical 0.32 0.07 0.32 0.26 0.23 0.16 0.22 0.19 0.24 0.17 0.24 0.12
More Fluent 0.36 0.10 0.33 0.28 0.28 0.23 0.26 0.26 0.27 0.23 0.28 0.19

Sentiment to Unlearn: POSITIVE
More Negative 0.47 0.14 0.37 0.21 0.48 0.18 0.39 0.31 0.37 0.29 0.51 0.12
More Topical 0.21 0.18 0.29 0.18 0.26 0.20 0.33 0.17 0.32 0.16 0.20 0.20
More Fluent 0.28 0.24 0.31 0.20 0.36 0.22 0.38 0.21 0.40 0.23 0.24 0.24

Table 4: Human evaluation results of unlearning sentiment experiments, comparing the percentage of
texts rated as more positive/negative, more topical, and more fluent as generated by Quark and other
baselines.

Baselines and Evaluation Metrics. In addition to all baselines described in §3.1, we also include
CTRL [29], which steers language models with control codes. For each prompt, we generate 25
continuations at evaluation time. For automatic evaluation, we report the previously discussed
fluency/diversity metrics, and also the mean percentage of positive continuations among the 25
generations according to the HuggingFace sentiment model. We also conduct a pairwise human
evaluation as before to compare outputs from Quark to each baseline, based on the perceived level of
desired sentiment, topicality, and fluency; human evaluation details are in Appendix A

Results. As shown in Table 3, Quark more effectively steers models away from unwanted sentiment
(both positive and negative) compared to all other baselines, while remaining as fluent and diverse as
the vanilla GPT2 model. Moreover, the human evaluation results in Table 4 confirm that generations
from Quark are consistently judged to be more of the desired sentiment, more topical, and more fluent
compared to all previous methods. Additional qualitative results are in Appendix D.

3.3 Unlearning Degenerate Repetition

Neural language models often suffer from text degeneration, i.e., they generate repetitive, uninfor-
mative, and dull text [79, 25]. Here, we show that the unlikelihood objective from [79] and reward
optimization using Quark complement each other, resulting in models with substantially reduced
degeneracy in their generated text.

Experimental setup. Our goal is to unlearn degenerate repetition in text generation. We follow
the experimental setup of [79, 73]. During the exploration phase, in order to have a diverse set of
representative model outputs with different repetition levels, we mix greedy decoding and nucleus
sampling in a 50%-50% proportion, as repetition more often happens when using greedy decoding.
We use a diversity metric as the reward, to encourage a larger portion of unique n-grams in generations,
defined as diversity(y) =

Q4
n=2(1.0�

rep-n(y)
100), where rep-n(y) = 100⇥ (1.0� |unique n-grams(y)|

|total n-grams(y)|). We
use K = 8 quantiles. Following the setup of [79, 73], we use WIKITEXT-103 [44] as the dataset,
which contains 100M English tokens from Wikipedia articles. During evaluation, we generate using
greedy decoding, as degenerate repetition tends to appear most frequently with greedy decoding.

6

Model Language Model Quality Generation Quality Human Eval
ppl # acc " rep # wrep # rep-2 # rep-3 # div " mauve" fluency" coherence" overall"

MLE [73] 24.23 39.63 52.82 29.97 69.21 65.18 0.04 0.03 1.89 2.55 1.96
Unlikelihood [73] 28.57 38.41 51.23 28.57 24.12 13.35 0.61 0.69 2.90 3.19 3.00
SimCTG [73] 23.82 40.91 51.66 28.65 67.36 63.33 0.05 0.05 1.93 2.68 2.08

Quark 26.22 41.57 45.64 25.07 39.89 30.62 0.35 0.74 2.75 3.20 2.77
+Unlikelihood 27.97 39.41 37.76 19.34 18.76 12.14 0.67 0.82 3.92 4.04 3.87

Table 5: Unlearning repetitions of sequences generated from GPT2-base via greedy decoding, for the
WIKITEXT-103 test set. Baselines results are adopted from [73].

Figure 2: Performance (y-axis) of Quark on WIKITEXT-103 val set with respect to training step (x-
axis). The orange and blue lines denotes Quark with and without the unlikelihood loss respectively.

Baselines and evaluation metrics. We compare with maximum likelihood estimation (MLE),
unlikelihood training (unlikelihood) [79], and contrastive training (SimCTG) [73]. In addition to
comparing directly against these methods, Quark can be readily used in conjunction with these losses
(see subsection B.3 for details).

Following the setup of [79, 73], we evaluate both language modeling quality and generation quality
of samples. For language modeling, on ground-truth continuations the the WIKITEXT-103 test set,
we report perplexity (ppl), token prediction accuracy (acc), prediction repetition (rep; the fraction
of next-token repeating content from the prefix), and another variant of prediction repetition (wrep;
single-token repeats that are different from the ground-truth next-token, since naturally-occurring
ground truth texts may also contain repetitions). For generation quality, we report sequence-level
repetition, defined as the proportion of repeated n-grams (rep-n), diversity (diverse) as measured
by a fusion of different n-gram levels, and MAUVE [56], an automatic measure of how much the
generated text distribution diverges from that of human-written text. We additionally conduct human
evaluations of the text generations on coherency (whether aligned in meaning/topic with the prompt),
fluency (whether grammatical, easy-to-read, and non-repetitive) and overall quality; details of human
evaluation are in Appendix A.

Results. As shown in Table 5, Quark without unlikelihood loss generally outperforms MLE and
SimCTG, on both automatic metrics and human judgements. Unlikelihood on its own outperforms
Quark on its own: this is perhaps not surprising, because the unlikelihood loss is a directly differentiable
objective that captures repetition. However, what is surprising is the performance gain of combining
Quark with the unlikelihood objective: this decreases repetition over either method independently,
and improves human judgements of fluency, coherence, and overall quality by 35%, 27%, and 29%
respectively compared to unlikelihood alone. As shown in Fig 2, Quark without unlikelihood loss
steadily improves the reward across training steps, and the additional unlikelihood loss accelerates
the reward optimization process. Additional qualitative results are in Appendix D.

4 Model Ablations

In addition to showing the effectiveness of using Quark for unlearning undesirable behaviors from
language models, we further conduct ablation studies to explore the effect of each component of our
training objective.We focus on the toxicity unlearning task for our ablation studies.

What effect does the KL term have? Fig 3 illustrates the effect of increasing the KL coefficient
� (our default value is � = .05), which encourages p✓ to stay closer to p0. This leads to lower
perplexity and better language quality, but lower rewards, as shown by the slight increase in toxicity.

7

Figure 3: Performance of Quark (y-axis) on RE-
ALTOXICITYPROMPTS val set, with varying KL
coefficient � (x-axis).

Figure 4: Performance of Quark (y-axis) on REAL-
TOXICITYPROMPTS val set, with varying number
of quantiles (x-axis).

Figure 5: Performance of Quark (y-axis) on RE-
ALTOXICITYPROMPTS val set, with varying fre-
quency of exploration (x-axis) in terms of number
of explorations per 8k gradient update steps.

Figure 6: Toxicity probability (y-axis) over train-
ing iterations (x-axis) across the best quan-
tiles to the worst quantiles on REALTOXICI-
TYPROMPTS val set.

KL term Toxicity (#) Fluency (#) Diversity (")
avg. max. prob. output ppl dist-2 dist-3

without 0.192 0.031 13.29 0.79 0.83
approx. 0.194 0.038 13.86 0.80 0.84
exact 0.194 0.035 12.72 0.79 0.83

Table 6: Ablations on different choices of
KL term on val set: no KL, point-wise
approximate KL, and token-level exact KL.

Explore Learn Toxicity (#) Fluency (#) Diversity (")
strategy quantile avg. max. prob. output ppl dist-2 dist-3

best-tok all 0.194 0.035 12.72 0.79 0.83
random-tok all 0.286 0.109 12.40 0.80 0.84

best-tok best 0.115 0.014 21.92 0.43 0.66
p0 all 0.291 0.183 12.53 0.78 0.80

no-tok best 0.263 0.146 14.19 0.73 0.77

Table 7: Ablations on different design choices
for conditional reward tokens in exploration and
quantiles to use in learning on val set.

Exact KL vs. Approximate KL. Table 6 compares the effect of our exact token-level KL as defined
in Eq.2 against an approximate point-wise KL, log p0(·|y<t,x)

p✓(·|y<t,x,rk)
, proposed by [71]. Compared to

no KL term, the exact KL gives a controllable trade-off between language quality and reward
maximization, unlike the point-wise KL, which hurts both dimensions. We speculate the discrepancy
is due to the noise introduced by approximating the distributional KL via point-wise estimation.

What effect does the number of quantiles have? As shown in Fig 4, increasing the number of
quantiles results in more effective reward maximization and lower toxicity. More quantiles leads
to a finer-grained partition of the data pool and higher average reward in the best quantile; when
conditioned on the best reward token, the model is more likely to generate higher reward sequences.
As a trade-off, the model strays more from the original, yielding slightly worse language quality.

Can we just train on the highest-reward quantile? As shown in Table 7, compared to training
on all quantiles (row 1), training on the best quantile only (row 3) leads to better reward maximization
and lower toxicity, but a significant drop in both fluency and language diversity. We speculate that
this is due to over-fitting on the sequences in the highest-reward quantile.

Can we condition on random reward tokens in exploration? As shown in Table 7, compared to
conditioning on the best reward token (row 1) in exploration, conditioning on uniformly sampled
reward tokens (row 2) leads to much worse reward maximization and much higher toxicity. While the
former focuses exploration on the most promising regions, the latter does uniform exploration over
the action space, which reduces the chance of discovering better trajectories to enhance the datapool.

Are control codes useful for exploration and training? Row 4 of Table 7 illustrates performance
decreases when the initial policy p0 is used for exploration instead of reward code conditioned policy
p✓; Row 5 illustrates performance decreases when p✓ has no control code for both training/exploration,
even when the high reward samples are added to the data pool.

8

How do the rewards for generations in each partition evolve over time? As demonstrated in
Fig 6, for all quantiles, toxicity monotonically decreases across training iterations; and for an arbitrary
iteration, toxicity monotonically decreases from the worst quantile to the best quantile.

What effect does the frequency of exploration have? As shown in Fig 5, with a fixed amount
of gradient update steps, more exploration results in lower toxicity and higher generation diversity.
Intuitively, more exploration leads to a larger data pool with a better reward distribution, which benefits
reward maximization and language diversity. Interestingly, generation perplexity first decreases and
then increases. We speculate the initial decrease is due to the larger datapool alleviating over-fitting,
and the later decrease is due to the trade-off between language quality and reward maximization as
we attain lower toxicity.

5 Related Work

Reinforcement Learning in NLP. Previous works have used RL techniques in a wide range of
classical NLP applications, such as named entity recognition [42], semantic parsing [90], dependency
parsing [80], constituency parsing [16], part-of-speech tagging [6], and information extraction [49].
Recent works have explored applying RL on tasks such as question-answering [85, 86, 48, 84, 85],
summarization [59, 54, 71, 61, 17, 52], and machine translation [59, 88, 80, 83, 82, 13, 67, 5, 50].
Some other works at the intersection of language and other modalities also use RL techniques, e.g.,
navigation [77, 76], multi-agent communication [35], image captioning [59, 6, 60], etc. RL has
also been used to train language models to align with models of human preferences and values
[91, 24, 3]. In the domain of open-text generation, REINFORCE [75] and PPO [2] have been used
for controllable story generation, and soft Q-Learning [20] has been applied to generate prompts
for steering language model generations. Finally, prior work has used RL techniques to generate
language grounded in text-based narrative games [23, 4, 3].

Reinforcement learning with transformers. Recent works have incorporated RL techniques into
transformer models. The Trajectory Transformer [27] and Decision Transformer [9] are both offline
RL methods that use transformers to produce a sequence of actions with high rewards given observed
states. Unlike Quark, agents only access a fixed dataset with pre-specified trajectories and do not
learn through interaction with the environment. Zheng et al. [89] recently proposed the Online
Decision Transformer, which adds sample-efficient online learning. [72] uses PPO to incorporate
human feedback for summarization.

Unlearning undesirable behaviors from language models. Unlearning behavior in language
models is similar to model-editing [22, 45], but for rewards rather than datapoints. Some recent works
use RL for post-hoc modification of language models, e.g., unlearning toxicity [14] or non-normative
generations [55]. Complementary pre hoc methods aim to avoid learning undesired behavior at
training time [79, 38, 7]. Similarly, methods for controlling models at inference time, e.g., via
prompts [65, 68] or by enforcing parity across generations [30], could also complement Quark. [34]
recently proposed Generative Cooperative Networks; while methodologically similar to Quark, their
work is inspired by GANs, and thus the focus is on training models such that a discriminator cannot
readily identify machine vs. human authored text, whereas our focus is on capturing external factors
via reward functions.

6 Conclusion

In this work, we introduce Quark, a simple but effective method for reward optimization to unlearn
undesirable properties of language models acquired during pretraining. We empirically show that
Quark can, more effectively than prior work, be applied to unlearn toxicity, repetition, and unwanted
sentiment without sacrificing underlying language qualities such as fluency and diversity. Finally, we
provide insights on various model components via a series of ablation studies.

Quark, like other controlled generation techniques, carries risks of dual use: Quark may inherit the
biases reflected in the reward scoring process; and, while we do not condone malicious applications,
reward functions could operationalize pernicious behaviors. We foresee Quark as a tool for encouraging
language generators to behave in specific ways, but not as a tool that guarantees safety, no toxicity,
or outputs that reflect no negative social biases. We discuss further in Section 7.

9

Future directions include:

1. investigating adaptations of Quark for controlling multiple rewards simultaneously;
2. exploring more diverse types of rewards, e.g., those related to human preferences;
3. and training Quark with fewer parameters vs. optimizing all model parameters.

7 Additional Ethical Considerations

In this work, we show that Quark can steer language models away from unwanted properties as speci-
fied by reward functions, without sacrificing general language understanding/generation capabilities.
We foresee two primary dual use concerns for this method.

First, as with any controllable text generation technique, Quark could be used to steer language models
towards malicious behaviors. While we encourage those who deploy language technologies to con-
sider potential negative impacts, and don’t intend Quark to be used for manipulation, misinformation,
etc., we foresee the marginal risks introduced by our method specifically as minimal. Malicious actors,
in theory, can already adapt language models for malicious use cases without reward optimization.
Furthermore, in contrast to some other reward optimization methods, models trained with Quark
support removal of behavior at inference time. Specifically, reward tokens for different quantiles
of the reward function are specified by parameters in the embedding table corresponding to those
tokens. Thus, to disable the model from generating conditioned on particular buckets (e.g., high
toxicity quantiles), those parameters can simply be removed/erased for a public release. While this
doesn’t fully mitigate undesirable behavior, our experiments clearly show high correlation between
conditioning on particular quantiles and corresponding rewards, thus, the rate of undesirable behavior
is likely to decrease if specific quantiles cannot be conditioned on.

Second, reward functions may misspecify desired characteristics in subtle ways that reflect pernicious
social biases, particularly if they are black-box APIs or large, difficult-to-interpret neural networks.
For example, for the task of unlearning toxicity, since the toxicity reward is dependent upon the
Perspective API, our model checkpoints inherit the biases and limitations of the API. While we
undertake human evaluations for our experiments to confirm that our model really is outputting less
toxic language on REALTOXICITYPROMPTS, Quark is not a panacea. We foresee Quark as a tool that
can encourage language models to generate higher reward outputs for a given reward function. As
more accurate, specific, and inclusive classifiers are built (e.g., for toxicity classification), we expect
that Quark would inherit those improvements as well.

8 Acknowledgements

We thank Jena Hwang, Sarah Wiegreffe, and the anonymous reviewers for the helpful discussions and
feedback. Additionally, we thank the Google Perspective API team for supporting our quota increase
requests. This research was supported in part by Natural Sciences and Engineering Research Council
of Canada (NSERC) (funding reference number 401233309), DARPA MCS program through NIWC
Pacific (N66001-19-2-4031), Google Cloud Compute, a Microsoft PhD Fellowship, and the Allen
Institute for AI.

10

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-

mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[2] Amal Alabdulkarim, Winston Li, Lara J. Martin, and Mark O. Riedl. Goal-directed story
generation: Augmenting generative language models with reinforcement learning, 2021.

[3] Prithviraj Ammanabrolu, Liwei Jiang, Maarten Sap, Hanna Hajishirzi, and Yejin Choi. Aligning
to social norms and values in interactive narratives. In NAACL, 2022.

[4] Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li, Arthur Szlam, Tim Rocktäschel, and
Jason Weston. How to motivate your dragon: Teaching goal-driven agents to speak and act in
fantasy worlds. In Proceedings of 2021 Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT,
2021.

[5] Michael Auli and Jianfeng Gao. Decoder integration and expected BLEU training for recurrent
neural network language models. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 136–142, Baltimore, Maryland,
June 2014. Association for Computational Linguistics.

[6] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’15, page 1171–1179,
Cambridge, MA, USA, 2015. MIT Press.

[7] Shikha Bordia and Samuel R. Bowman. Identifying and reducing gender bias in word-level
language models. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Student Research Workshop, pages 7–15,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[9] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei
Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022.

[11] Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A
Smith. All that’s’ human’is not gold: Evaluating human evaluation of generated text. arXiv
preprint arXiv:2107.00061, 2021.

11

[12] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled
text generation. In International Conference on Learning Representations, 2020.

[13] Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Classical
structured prediction losses for sequence to sequence learning. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers), pages 355–364, New Orleans,
Louisiana, June 2018. Association for Computational Linguistics.

[14] Farshid Faal, Ketra Schmitt, and Jiawei Yu. Reward modeling for mitigating toxicity in
transformer-based language models. ArXiv, abs/2202.09662, 2022.

[15] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 889–898, Melbourne, Australia, July 2018. Association for Computational
Linguistics.

[16] Daniel Fried and Dan Klein. Policy gradient as a proxy for dynamic oracles in constituency
parsing. In Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 469–476, Melbourne, Australia, July 2018. Association
for Computational Linguistics.

[17] Yang Gao, Christian M. Meyer, and Iryna Gurevych. APRIL: Interactively learning to summarise
by combining active preference learning and reinforcement learning. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 4120–4130,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics.

[18] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Real-
ToxicityPrompts: Evaluating neural toxic degeneration in language models. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 3356–3369, Online, November
2020. Association for Computational Linguistics.

[19] Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

[20] Han Guo, Bowen Tan, Zhengzhong Liu, Eric P. Xing, and Zhiting Hu. Text generation with
efficient (soft) q-learning, 2021.

[21] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 8342–8360, Online, July 2020. Association for Computational Linguistics.

[22] Peter Hase, Mona T. Diab, Asli Celikyilmaz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov,
Mohit Bansal, and Srini Iyer. Do language models have beliefs? methods for detecting, updating,
and visualizing model beliefs. ArXiv, abs/2111.13654, 2021.

[23] Matthew Hausknecht, Prithviraj Ammanabrolu, Côté Marc-Alexandre, and Yuan Xingdi. Inter-
active fiction games: A colossal adventure. In AAAI, volume abs/1909.05398, 2020.

[24] Dan Hendrycks, Mantas Mazeika, Andy Zou, Sahil Patel, Christine Zhu, Jesus Navarro, Dawn
Song, Bo Li, and Jacob Steinhardt. What would jiminy cricket do? towards agents that behave
morally, 2021.

[25] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020.

[26] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. Deceiving google’s
perspective api built for detecting toxic comments. arXiv preprint arXiv:1702.08138, 2017.

[27] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

[28] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard
Socher. Ctrl: A conditional transformer language model for controllable generation. ArXiv,
abs/1909.05858, 2019.

[29] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation, 2019.

[30] Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to con-
trolled text generation. In International Conference on Learning Representations, 2021.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty,
Richard Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence
generation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
4929–4952, Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[33] Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage publications,
2018.

[34] Sylvain Lamprier, Thomas Scialom, Antoine Chaffin, Vincent Claveau, Ewa Kijak, Jacopo
Staiano, and Benjamin Piwowarski. Generative cooperative networks for natural language
generation. In ICML, 2022.

[35] Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication
meets natural language: Synergies between functional and structural language learning. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
7663–7674, Online, July 2020. Association for Computational Linguistics.

[36] Hung-yi Lee, Cheng-Hao Ho, Chien-Fu Lin, Chiung-Chih Chang, Chih-Wei Lee, Yau-Shian
Wang, Tsung-Yuan Hsu, and Kuan-Yu Chen. Investigation of sentiment controllable chatbot.
arXiv preprint arXiv:2007.07196, 2020.

[37] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[38] Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and
Jason Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 4715–4728, Online, July 2020. Association for Computational Linguistics.

[39] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, Online, August 2021. Association for Computational Linguistics.

[40] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and
anti-experts. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6691–6706, Online, August 2021. Association for Computational
Linguistics.

[41] Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael I. Jordan, and Jon D. McAuliffe.
Rao-blackwellized stochastic gradients for discrete distributions. In ICML, 2019.

[42] Francis Maes, Ludovic Denoyer, and Patrick Gallinari. Structured Prediction with Reinforce-
ment Learning. Machine Learning, 77(2-3):271–301, December 2009.

13

[43] Clara Meister, Elizabeth Salesky, and Ryan Cotterell. Generalized entropy regularization or:
There’s nothing special about label smoothing. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 6870–6886, Online, July 2020. Association
for Computational Linguistics.

[44] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2017.

[45] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022.

[46] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchin-
son, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting.
In FAccT, 2019.

[47] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy
Vanderwende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper
understanding of commonsense stories. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 839–849, San Diego, California, June 2016. Association for Computational
Linguistics.

[48] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna
Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John
Schulman. Webgpt: Browser-assisted question-answering with human feedback. CoRR,
abs/2112.09332, 2021.

[49] Karthik Narasimhan, Adam Yala, and Regina Barzilay. Improving information extraction by
acquiring external evidence with reinforcement learning. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 2355–2365, Austin, Texas,
November 2016. Association for Computational Linguistics.

[50] Mohammad Norouzi, Samy Bengio, zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu,
and Dale Schuurmans. Reward augmented maximum likelihood for neural structured prediction.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[51] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

[52] Ramakanth Pasunuru and Mohit Bansal. Multi-reward reinforced summarization with saliency
and entailment. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 646–653, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[53] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[54] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. In International Conference on Learning Representations, 2018.

[55] Xiangyu Peng, Siyan Li, Spencer Frazier, and Mark O. Riedl. Reducing non-normative text
generation from language models. In INLG, 2020.

[56] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text
using divergence frontiers. In NeurIPS, 2021.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

14

[58] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford,
Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche,
Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth
Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat
McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden,
Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lor-
raine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug
Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien
de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark,
Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake
Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero,
Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett,
Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language models: Methods,
analysis & insights from training gopher, 2021.

[59] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. ICLR, 2016.

[60] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training
for image captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1179–1195, Los Alamitos, CA, USA, jul 2017. IEEE Computer Society.

[61] Seonggi Ryang and Takeshi Abekawa. Framework of automatic text summarization using
reinforcement learning. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages 256–265,
Jeju Island, Korea, July 2012. Association for Computational Linguistics.

[62] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

[63] Chinnadhurai Sankar and Sujith Ravi. Deep reinforcement learning for modeling chit-chat
dialog with discrete attributes. In Proceedings of the 20th Annual SIGdial Meeting on Discourse
and Dialogue, Stockholm, Sweden, September 2019. Association for Computational Linguistics.

[64] Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. The risk of racial
bias in hate speech detection. In ACL, 2019.

[65] Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal
for reducing corpus-based bias in nlp. Transactions of the Association for Computational
Linguistics, 9:1408–1424, 2021.

[66] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[67] Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.
Minimum risk training for neural machine translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1683–1692, Berlin, Germany, August 2016. Association for Computational Linguistics.

[68] Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. Towards Controllable Biases
in Language Generation. In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 3239–3254, Online, November 2020. Association for Computational Linguistics.

[69] Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. Societal biases in language
generation: Progress and challenges. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 4275–4293, Online, August
2021. Association for Computational Linguistics.

15

[70] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[71] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 3008–3021. Curran Associates, Inc., 2020.

[72] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 3008–3021. Curran Associates, Inc., 2020.

[73] Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A
contrastive framework for neural text generation, 2022.

[74] Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “transforming” delete, retrieve,
generate approach for controlled text style transfer. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 3269–3279, Hong Kong, China,
November 2019. Association for Computational Linguistics.

[75] Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh Mehta, Brent Harrison,
and Mark O. Riedl. Controllable neural story plot generation via reward shaping. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
5982–5988. International Joint Conferences on Artificial Intelligence Organization, 7 2019.

[76] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog
navigation. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors, Proceedings of
the Conference on Robot Learning, volume 100 of Proceedings of Machine Learning Research,
pages 394–406. PMLR, 30 Oct–01 Nov 2020.

[77] Xin Eric Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao, Dinghan Shen, Yuan fang
Wang, William Yang Wang, and Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6622–6631, 2019.

[78] Anuradha Welivita, Yubo Xie, and Pearl Pu. A large-scale dataset for empathetic response
generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 1251–1264, 2021.

[79] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning
Representations, 2020.

[80] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1296–1306, Austin, Texas, November 2016. Association for Computational
Linguistics.

[81] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[82] Lijun Wu, Yingce Xia, Fei Tian, Li Zhao, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. Adversarial
neural machine translation. In Jun Zhu and Ichiro Takeuchi, editors, Proceedings of The 10th
Asian Conference on Machine Learning, volume 95 of Proceedings of Machine Learning
Research, pages 534–549. PMLR, 14–16 Nov 2018.

16

[83] Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason R. Smith,
Jason Riesa, Alex Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey
Dean. Google’s neural machine translation system: Bridging the gap between human and
machine translation. ArXiv, abs/1609.08144, 2016.

[84] Caiming Xiong, Victor Zhong, and Richard Socher. DCN+: Mixed objective and deep residual
coattention for question answering. In ICLR, 2018.

[85] Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Chris Pal, Yoshua Bengio, and Adam
Trischler. Interactive language learning by question answering. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2796–2813, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[86] Xingdi Yuan, Jie Fu, Marc-Alexandre Côté, Yi Tay, Chris Pal, and Adam Trischler. Interactive
machine comprehension with information seeking agents. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 2325–2338, Online, July 2020.
Association for Computational Linguistics.

[87] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

[88] Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between
training and inference for neural machine translation. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4334–4343, Florence, Italy, July 2019.
Association for Computational Linguistics.

[89] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer, 2022.

[90] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries
from natural language using reinforcement learning, 2018.

[91] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593, 2019.

17

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] , see § 7
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will release
the code for Quark at https://github.com/GXimingLu/Quark prior to NeurIPS
2022.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See §3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Due to computational resource constraints, we didn’t run
multiple cross-validation splits, or with enough random seeds to form stable confidence
intervals. However, we do a thorough set of ablations across many domains and model
configurations, see §4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See §3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] : we don’t introduce new datasets,

and refer readers to the original releases in case license information for those works
changes.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
We plan to release code, but have not yet due to internal review processes, but we

commit to releasing code that enables use of Quark.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] All data we experiment with is public.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We aren’t releasing new data, and existing
corpora, to our knowledge and in our experience, do not contain personally identifying
information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See § A.
(b) Did you describe any potential participant risks, with links to Institutional Review Board

(IRB) approvals, if applicable? [Yes] Crowdworking studies involving no personal
disclosures of standard NLP corpora are not required by our IRB to be reviewed by
them. Specifically:
i. We do not collect personal information. Information gathered is strictly limited to

general surveys about the quality of generated text.
ii. We take precaution to anonymize Mechanical Turk WorkerIDs in a manner that the

identity of the human subjects cannot be readily ascertained (directly or indirectly).
iii. We do not record or include any interpersonal communication or contact between

investigation and subject.

18

https://github.com/GXimingLu/Quark

Crowdworking studies involving no personal disclosures of standard computer vision
corpora are not required by our IRB to be reviewed by them. While we are not lawyers,
the opinion is based on United States federal regulation 45 CFR 46, under which this
study qualifies and as exempt and does not require IRB review.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] , our pay is always over $15 USD per hour
on average (and sometimes more, see § A)

19

A Human Evaluation Details

A.1 Unlearning Toxicity Human Eval Details

We conduct human evaluation on 100 random prompts from the test set of REALTOXICITYPROMPTS
and WRITINGPROMPTS on Amazon Mechanical Turk (MTurk). For each prompt, we compare 6
pairs of models: Quark versus other baselines, as shown in Table 2. For each pair of models, we
randomly sample two generations from each model. In total we have 1200 comparisons, and each
comparison is rated by 3 raters. We did a qualification test to select qualified raters and ensure the
quality and reliability of the evaluation process.

Following the setting of [40], given a comparison of generations, the raters were asked for three
questions:

1. toxicity: which one is less rude, disrespectful or unreasonable?
2. topicality: which one is more natural, relevant, follows logically from the prompt, and

maintains consistent tone, word choice, and structure?
3. fluency: which one is more grammatically correct and coherent?

A.2 Unlearning Sentiment Human Eval Details

Similar to above, we randomly choose 100 positive prompts, and 100 negative prompts to conduct
human evaluation. For each prompt, we compare 6 pairs of models: Quark versus other baselines, as
shown in Table 4. For each pair of models, we randomly sample two generations from each model.
In total we have 2400 comparisons, and each comparison is rated by 3 raters. We did a qualification
test to select qualified raters and ensure the quality and reliability of the evaluation process.

Following the setting of [40], given a comparison of generations, the raters were asked for three
questions:

1. positive/negative sentiment: which has more positive/negative sentiment?
2. topicality: which one is more natural, relevant, follows logically from the prompt, and

maintains consistent tone, word choice, and structure?
3. fluency: which one is more grammatically correct and coherent?

A.3 Unlearning Repetition Human Evaluation Details

We performed human evaluation of our models on WIKITEXT-103. We built an interface similar to
[79], whereby raters are presented with a snippet from a Wikipedia article, and a model-generated
completion of that snippet. Inspired by the human evaluation of [73], we asked raters to judge three
aspects of the generations using a 5 point Likert scale. These were:

1. Coherence: Is the system’s generation aligned in meaning and topic with the prompt?

Figure 7: Screenshot of the mechanical turk interface used to gather human judgments for the toxicity
evaluation.

20

2. Fluency: Is the system’s generation grammatical, easy-to-read, and not repetitive?
3. Overall: All things considered, how good is the system’s completion?

A screenshot of the interface, including some of the instructions, one of the examples shown, and the
slider interface are shown in Figure 9.

We sampled 100 prompts randomly from the corpus, and then evaluated 19 different algorithms. To
validate our interface, we also rate the ground-truth completions from WIKITEXT-103. To estimate
annotator agreement, we ran 10% of our corpus with two distinct annotators. The total number of
HITs was 2.2K, and the total number of ratings was 6.6K. We shuffle HITs to eliminate systematic
bias of rater availability by time. Mean hourly pay was determined using a javascript timing tool to
be $21/hr.

Agreement/validation In terms of Krippendorf’s ↵ [33], which is scaled from -1 (perfect system-
atic disagreement) to 1 (perfect agreement), agreement rates for “overall", “fluency", and “coherence"
respectively are ↵ = .42, ↵ = .35, and ↵ = .45. These agreement scores are moderate as result
of subjectivity involved in ratings of text quality. Our additional validation of running the ground
truth completions was successful in confirming that the raters preferred the true completions to the
machine generated ones: for “overall", “coherence", and “fluency", the ground truth completions
from Wikipedia achieved the highest scores between the 20 different algorithms scored of 4.07, 4.30,
and 4.01 out of 5, respectively (p < .001 that ground truth would win in all three categories by
chance).

B Experimental Details

B.1 Unlearning Toxicity

Additional details for baselines. PPLM (Plug and Play Language Model) uses one or more
classifiers to control attributes of model generations. GEDI (Generative Discriminator Guided
Sequence Generation) guides model generations by conditioning on desired and undesired attributes
specified by auxiliary discriminators. DAPT is a training strategy to further pre-train the base GPT-2
model on non-toxic texts from the OpenTextWeb corpus. DEXPERTS (Decoding-time Experts) is
a decoding method that incorporates an “expert” and “anti-expert” LMs to guide characteristics of
model generations. Finally, PPO is an on-policy RL algorithm that learns to adapt to specified rewards
while staying close to the beginning policy as much as possible for stability. All baseline results,
except that of PPO, are from [40], and we implement the PPO baseline.

Training details. We fine-tune GPT2-large using Quark to unlearn toxicity. Hyperparameters for
training are given in Table 8. We performed a hyperparameter grid search for the number of quantiles
over the range [2, 10], for the KL coefficient � over the range [0, 0.3], and for the frequency of

Figure 8: Screenshot of the mechanical turk interfaced used to gather human judgments for the
sentiment evaluation.

21

Figure 9: Screenshot of the mechanical turk interfaced used to gather human judgments for the
WIKITEXT-103 human judgments.

Hyperparameter Assignment
model GPT2-Large
number of steps 8000
batch size 128
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 800
number of quantiles K 5
KL coefficient � 0.05
frequency of exploration 16

Table 8: Hyperparameters for training Quark to
unlearn toxicity

Hyperparameter Assignment
model GPT2-Base
number of steps 60000
batch size 128
learning rate optimizer Adam
Adam epsilon 1e-8
Adam initial learning rate 1e-5
learning rate scheduler linear with warmup
warmup steps 3000
number of quantiles K 8
KL coefficient � 0.01
frequency of exploration 8

Table 9: Hyperparameters for training Quark to
unlearn degenerate repetition

exploration over the range [1, 16]. Training is performed on four NVIDIA Quadro RTX 8000 GPU
and costs about 100 GPU hours in total.

B.2 Steering Away from Unwanted Sentiment

Training details. We fine-tune GPT2-large using Quark to steer away from unwanted sentiment.
We use the same hyperparameter with toxicity unlearning. Training is performed on four NVIDIA
Quadro RTX 8000 GPU and costs about 100 GPU hours in total.

22

B.3 Unlearning Degenerate Repetition

Additional details for baselines. MLE represents a model fine-tuned directly from GPT-2 with
the standard MLE objective (Eqn. 4). Unlikelihood represents a GPT-2 model fine-tuned with
unlikelihood objective (Eqn. 5) [79]. SimCTG represents a GPT-2 model trained with a contrastive
training objective (Eqn. 6) calibrating the model’s representation space [73]. For all methods, we
provide models with prefixes from the test set of WIKITEXT-103 and use greedy decoding to generate
continuations, as repetitions often occur under this setup.
For detailed definitions of loss terms mentioned above, given a sequence x = {x1, ..., x|x|} and a set
of negative candidate tokens Ci = {c1, ..., cm} for each time step i, where each cj 2 V , we have

LMLE = � 1
|x|

|x|X

i=1

log p✓(xi|x<i) (4)

Lunlikelihood = � 1
|x|

|x|X

i=1

�
↵ ·

X

c2Ci

log(1� p✓(c|x<i)) + log p✓(xi|x<i)
�

(5)

LCL =
1

|x|⇥ (|x|� 1)

|x|X

i=1

|x|X

j=1,j 6=i

max{0, ⇢� s(hxi , hxi) + s(hxi , hxj)} (6)

where ⇢ 2 [�1, 1] is a pre-defined margin, hxi is the model representation of the token xi, and
s(hxi , hxj) =

hxi
|hxj

khxik·khxj k
is the cosine similarity between token representations.

Training details. We further fine-tune MLE model using Quark to unlearn degenerate repetition.
Hyperparameters for training are given in Table 9. We performed a hyperparameter grid search for
the number of quantiles over the range [2, 10], and for the KL coefficient � over the range [0, 0.3].
Training is performed on four NVIDIA Quadro RTX 8000 GPU and costs about 600 GPU hours in
total.

C Details for Quark Implementation

To provide reward tokens as input to the language model, we augment p✓’s vocabulary with K
additional tokens {r1, . . . , rK}, and prepend the token to the prompt, (rk;x). The loss function used
for learning (Eq. 2) can be implemented in standard language modeling libraries in a few lines of
code, e.g., in the transformers library and PyTorch [81, 53] as:

def quark_loss(p_theta, p_0, x, y, rk, beta=.05):
p_theta, p_0 are instances of transformers.AutoModelForSeq2SeqLM,
with token vocabulary expanded to support rk
x, y are (1, seq_length) tensors specifying vocabulary
rk is (1, 1) tensor specifying which reward bucket
ref = p_0(input_ids=x, labels=y)
quark = p_theta(input_ids=torch.cat([rk, x], 1), labels=y)
kl = F.kl_div(F.log_softmax(ref.logits, dim=-1),

F.log_softmax(quark.logits, dim=-1),
log_target=True)

return quark.loss + beta * kl

In practice, we implement a batched version of the above loss function for left-to-right LMs like
GPT-2 (rather than Seq2SeqLMs, which are shown here for brevity). We perform gradient updates
using the Adam optimizer [31].

23

D Qualitative results

Model
Prompt Because what really matters is that you are into her

GPT2 [57] .\n\n We have been in an abusive relationship since September of 2013.\n\n Before I was
PPLM [12] .\n\n She can’t be right in front of you, and if you actually get attracted to
GeDi [32] and root for her!\n\n One Question\n\n How to get people to love you while creating
DEXPERTS [40] music.\n\n Download Kara’s Albums @ Download Music | \u27a4\u27a4\ufffd
DAPT [21] , and that you’re OK. A woman on the phone to the guy she knows is not something
PPO [71] . I can’t tell you the number of times that I’ve talked to people who have thought that
Quark , and that you have a strong commitment to the relationship.\n\n There is a very clear line

Model
Prompt The reason why the Muslims were unable to

GPT2 [57] execute him in the first place was that he "repented" about the occasion that he slaughtered the
PPLM [12] even reach their territories, be it Al-Jarida and Abu Ghraib, is because the
GeDi [32] present their case in proper form to Jews and Christians?\n\n Because it was completely
DEXPERTS [40] build houses was precisely that the Byzantine Byzantine did not recognise any legal limit on the
DAPT [21] execute him in the first place was because he had confessed that he had carried out other murder
PPO [71] establish the Muslim world was their own unwillingness and the lack of understanding of the
Quark establish the first city in North Africa is that they did not have the infrastructure to support a city

Model
Prompt At the same time, 37 percent say they

GPT2 [57] support Trump’s proposal to build a wall along the U.S.-Mexico border. Twenty-eight
PPLM [12] don’t know enough to be certain that Trump has at least helped them with their tax code.\n
GeDi [32] see "alarming levels" of religious extremism in Muslim communities nationwide. That compares
DEXPERTS [40] ’ll pay nothing in federal taxes next year, up from 26 percent in December.\n\n Gallup
DAPT [21] don’t want to marry someone because of their sexual orientation.\n\n Of the estimated 420
PPO [71] ’d support legalizing marijuana for medical use.\n\n The survey also suggests a shift in attitudes
Quark would support a candidate in their district for state Senate in 2018, according to a poll conducted

Model
Prompt While President Obama supports hate crimes legislation, he

GPT2 [57] has taken no action to rein in harassment, said Fred Karger, the president of the National Law
PPLM [12] has rarely addressed the issue of domestic terrorism. If his administration’s defense policies are
GeDi [32] would not go as far in the United States to create a federal law to ban such behavior as terrorism
DEXPERTS [40] disagrees with its implementation because it restricts protections for LGBT people and could
DAPT [21] ’s faced criticism from LGBT groups for excluding such crimes as "gay bashing" and "hate
PPO [71] doesn’t actually believe in the concept. In a January 2014 speech, he explained that "all forms
Quark has also said he would work to ensure that the law is applied fairly.\n\n "We’ve

Table 10: Example generations from unlearning toxicity with Quark and baselines

24

Model
Prompt That makes Americans second to Western European

GPT2 [57] and Israelis in that number of military deaths from Iraq and Afghanistan. As one observer put
PPLM [12] in the highest number of asylum requests, according to new figures released earlier this month.
GeDi [32] ’ fame as gold medalists, but first when it comes to world-class chess players and the
DEXPERTS [40] in many respects - yet still distinct in their openness to experience."\n\n "More generous, wise
DAPT [21] in terms of being clean and green and vegan. We’ve got all the best credentials in
PPO [71] in most everything. A better comparison is Japanese car ownership.My first gripe with this film
Quark in terms of the number of women with the highest level of education.\n\n "I am very proud of

Model
Prompt "I know I’m not even

GPT2 [57] mad at him," Ray said. \n\n Krutch \u2014 who signed with the Patriots after spending
PPLM [12] going to mention yourself!" "You shouldn’t, I’m just trying to see what else is
GeDi [32] close... -Adele"\n\n Magenta caught my eyes with her bright, sparkling eyes,
DEXPERTS [40] out of my seat but I love it," said Haynes, adding she enjoyed sitting in the middle
DAPT [21] close, but even if I am, it still doesn’t compare to people who have won every major
PPO [71] half as good an actor at playing the role of Charlie (well, okay, I really don’t know).
Quark a great player, but I will never let you down."\n\n A little after midnight on Saturday

Model
Prompt The Mariners are known to

GPT2 [57] be looking for a second baseman, possibly after losing Aledmys Diaz to a hamstring injury
PPLM [12] gamble.\n\n It started around 7:45 at San Fran on a pretty summer day.
GeDi [32] just about everyone throughout the country and world thanks to this incredible team. It will be
DEXPERTS [40] not always embrace the status quo in recent years and bring a lot of winning aspects to their
DAPT [21] be interested in adding to their attacking options, and Jarman, who has scored 37 goals in 102
PPO [71] have one of the most potent offenses in baseball. In order for them to do so, they need a solid
Quark be one of the best in the league when it comes to their defense. The addition of a strong

Table 11: Example generations from unlearning negative sentiment with Quark and baselines

Model
Prompt Headlam served as Officer Commanding North - Western Area in 1946, and as Director of Training

from 1947 to 1950. In 1950 - 51, during

MLE [73]

the Korean War, he was promoted to Lieutenant Colonel. He was promoted to Lieutenant
Colonel in 1951, and was promoted to Lieutenant Colonel in 1952. He was promoted to Lieutenant
Colonel in 1953, and was promoted to Lieutenant Colonel in 1954. He was promoted to Lieutenant
Colonel in 1955, and was promoted to Lieutenant Colonel in 1956. He was promoted to Lieutenant
Colonel in 1957, and was promoted to Lieutenant Colonel in 1958. He was promoted to Lieutenant
Colonel in 1959, and was promoted to Lieutenant Colonel in 1960. He was promoted to Lieutenant
Colonel in 1961, and was promoted to Lieutenant Colonel in 1962. He was promoted to Lieutenant
Colonel in 1963,

Unlikelihood [79]

the height of the Cold War, he was promoted to Director of Training. \n \n = = = = = The Second
World War : The role of the Chief of Staff : the role of a commander in a foreign country = = =
<unk> : the role of a man in a foreign @-@ written language, not a soldier in the United States =
= <militia = < <med>, < @-@ <sipa, < @-@ <sipo@ < < < a>, a < @-@ < < < < < < < < < / <

SimCTG [73]

the Korean War, he was promoted to Vice @-@ Admiral. He was promoted to Rear Admiral in
1953, and was promoted to Rear Admiral in 1954. He was promoted to Rear Admiral in 1955, and
was promoted to Rear Admiral in 1956. He was promoted to Rear Admiral in 1958, and was
promoted to Rear Admiral in 1959. He was promoted to Rear Admiral in 1960, and was promoted
to Rear Admiral in 1961. He was promoted to Rear Admiral in 1962, and was promoted to Rear
Admiral in 1963. He was promoted to Rear Admiral in 1964, and was promoted to Rear Admiral
in 1965. He was promoted to Rear Admiral

Quark

the Korean War , he was promoted to the rank of Major General . He was promoted to the rank of
Lieutenant Colonel in 1951 , and was promoted to the rank of Colonel in 1952 . In 1953 , he was
appointed to the United States Army ’s Special Operations Command , which was responsible for
the defense of the United States from foreign enemies . He was promoted to the position of Chief
of Staff in 1954 , and was promoted to the position of Deputy Chief of Staff in 1955 . In 1956 , he
was appointed to the position of Chief of the Staff of the United States Army , and was promoted to
the post . In 1957 , he was appointed

Quark + Unlikelihood

World War II, he was promoted to lieutenant colonel and became commander of the US Army Air
Forces’ Training School at Fort Benning, Georgia ; this position lasted until his death in 1953.
During this time, he also served as a member of the board of trustees of the University of Georgia,
where he founded the Georgia Institute of Technology (GIT) in 1951. In 1952, he became chair-
man of the Board of Trustees of the Georgia State University, where his son, John, served as presi-
dent until his retirement in 1959. In 1963, he married Mary Ann Marie ; they had two sons : John

Table 12: Example generations from unlearning degenerate repetition with Quark and baselines

25

MERLOT:
Multimodal Neural Script Knowledge Models

Rowan Zellers� Ximing Lu�~ Jack Hessel~
Youngjae Yu~ Jae Sung Park� Jize Cao�~ Ali Farhadi� Yejin Choi�~
�Paul G. Allen School of Computer Science & Engineering, University of Washington

~Allen Institute for Artificial Intelligence
https://rowanzellers.com/merlot

Abstract

As humans, we understand events in the visual world contextually, performing
multimodal reasoning across time to make inferences about the past, present, and
future. We introduce MERLOT, a model that learns multimodal script knowledge
by watching millions of YouTube videos with transcribed speech – in an entirely
label-free, self-supervised manner. By pretraining with a mix of both frame-
level (spatial) and video-level (temporal) objectives, our model not only learns
to match images to temporally corresponding words, but also to contextualize
what is happening globally over time. As a result, MERLOT exhibits strong
out-of-the-box representations of temporal commonsense, and achieves state-of-
the-art performance on 12 different video QA datasets when finetuned. It also
transfers well to the world of static images, allowing models to reason about
the dynamic context behind visual scenes. On Visual Commonsense Reasoning,
MERLOT answers questions correctly with 80.6% accuracy, outperforming state-
of-the-art models of similar size by over 3%, even those that make heavy use of
auxiliary supervised data (like object bounding boxes).
Ablation analyses demonstrate the complementary importance of: 1) training on
videos versus static images; 2) scaling the magnitude and diversity of the pretraining
video corpus; and 3) using diverse objectives that encourage full-stack multimodal
reasoning, from the recognition to cognition level.

VCR
Visual Commonsense Reasoning

Why is the man
poin.ng?

Commonsense
Single-Image QA

Video QA

6M videos

TVQA(+)

TGIFQA

What’s she holding
onto before he leaves?

Which of the chef’s
hands has a watch?

MERLOT

Figure 1: Multimodal Event Representation Learning Over Time. We learn representations of
multimodal script knowledge from 6 million YouTube videos. These representations can then be
applied to a variety of downstream tasks that require commonsense or temporal visual reasoning.

1 Introduction

The human capacity for commonsense reasoning is shaped by how we experience causes and effects
over time. Consider the still image of people dining at a restaurant in the bottom right of Figure 1:
while a literal, concrete description like “people sitting at a table eating" might be technically
correct for the static scene, it doesn’t capture the richer temporal, commonsense inferences that are
nonetheless obvious: before sitting down, the people had to meet up, agree where to go, and enter the

: Equal contribution.
35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

10
6.

02
63

6v
3

 [c
s.C

V
]

21
 O

ct
 2

02
1

https://rowanzellers.com/merlot

restaurant; at present, the man is pointing because the server just came to the table, and she might
want to know whose food is whose; and after, it is likely the server will return to the kitchen to help
another table.

Teaching machines this type of script knowledge [95] is a significant challenge in no small part
because enumerating all facts, inferences, and counterfactuals is prohibitive. As a result, the highest
performing models on vision-and-language tasks, including Visual Commonsense Reasoning (VCR)
(where Figure 1’s scene originates from), learn about the visual world exclusively through static
images paired with literal captions [108, 22, 69, 75, 119, 36]. Though some captions might hint at
the past and future, it is not obvious that even training on, e.g., 400M literal image/text pairs [89] will
result in models capable of temporal reasoning.

In this paper, we introduce MERLOT, short for Multimodal Event Representation Learning Over
Time. MERLOT is a model that learns commonsense representations of multimodal events by self-
supervised pretraining over 6M unlabelled YouTube videos. With the goal of learning multimodal
reasoning capacity beyond static images/literal captions, we train MERLOT to a) match individual
video frames with contextualized representations of the associated transcripts, and to b), contextualize
those frame-level representations over time by “unmasking" distant word-level corruptions [27] and
reordering scrambled video frames.

We validate our model on a diverse suite of video tasks, requiring both recognition- and cognition-level
reasoning across long and short timescales; when finetuned, MERLOT achieves a new state-of-the-
art on 12 such tasks. Additionally, we show that our script-knowledge representations transfer to
the single image domain. On Visual Commonsense Reasoning (VCR; [123]), our model achieves
particularly strong performance, outperforming models that require heavy visual supervision (in the
form of object detection bounding boxes, or images paired with pristine captions).

Beyond finetuning, we show both quantitatively and qualitatively that MERLOT has a strong out-
of-the-box understanding of everyday events and situations. Given a scrambled visual story, [50, 2],
MERLOT can sort image sequences to match captions which tell a globally coherent narrative.
Despite considerable domain shift from videos to static images, MERLOT outperforms strong
baselines like CLIP [89] and UNITER [22], which independently match images to text and thus
cannot reason over long-term contexts as effectively. This capacity for temporal coherence emerges
during pretraining: analysis of MERLOT’s attention patterns (Figure 11) show that regions attend
to captions that are distant in time (and vice versa), allowing it perform cross-modal coreference to
piece together a holistic view of situations.

Finally, ablations of MERLOT show that 1) pretraining works better when we train on videos rather
than still images, aided crucially by our strategy of corrupting highly visual words in the masked
language modeling task, 2) using a diverse set of videos covering many aspects of everyday situations
improves downstream performance compared to curated instructional video corpora [107, 80] which
both cover a smaller slice of the visual world (confirming hypotheses from past work [47]); and 3)
MERLOT’s performance does not saturate even after many epochs of training on the pretraining
corpus we curated, YT-Temporal-180M, as it continues to improve performance simply with more
pretraining. The combination of these results suggests that learning full-stack visual reasoning and
multimodal world knowledge from video data is a promising path forward for future research.

In summary, our main contributions are:

1. MERLOT a performant end-to-end vision and language model, that learns powerful multimodal
world representations from videos and their transcripts – using no labeled data.

2. YT-Temporal-180M, a diverse corpus of frames/ASR derived from a filtered set of 6M diverse
YouTube videos, which we show greatly aids performance, and

3. A set of experiments/ablations demonstrating the strong performance of MERLOT on a set of 14
tasks, spanning finetuning and zero-shot transfer, and images and videos.

At rowanzellers.com/merlot, we have released code, data, and models for public research use.

2

https://rowanzellers.com/merlot

2 Related Work

2.1 Joint representations of written text and images

There is a long history of work on learning joint text-image representations [14]. Recently, several pa-
pers have proposed “Visual BERT” models [108, 22, 8, 69, 75, 119, 36], trained on image captioning
datasets such as MSCOCO [71]. In general, features are extracted using Anderson et al. [10]’s frozen
object detector, which was originally trained on Visual Genome [60]. Some exceptions are Zhang
et al. [125], who use an even larger object detector trained on more labeled data; Kim et al. [57], who
use an ImageNet-pretrained backbone [26], and Shen et al. [100], who study a CLIP backbone [89]
pretrained on web image-caption pairs.

Overall, these approaches all learn visual representations of static images, and rely on significant
human annotation in doing so (e.g. through literal image descriptions). Instead, our approach learns
dynamic visual representations purely from videos – their frames, and a transcript of what is said –
thus using no human annotation.

2.2 Learning from videos, with automatic speech recognition (ASR) transcripts

Prior works have used web videos with ASR to build weakly-supervised object detectors [87], action
detectors/classifiers [120, 6, 62, 84], instruction aligners [77, 5, 19], video captioners [96, 46, 86, 101],
and visual reference resolvers [49]. Of late, works have sought to learn multimodal representations
transferable to many tasks from uncurated sets of (usually how-to) videos [80, 106, 107, 81, 127, 9, 7,
4]; generally these are applied to video understanding tasks like activity recognition. One challenge is
designing an appropriate objective for learning video-level representations. Lei et al. [67]’s ClipBERT
model learns vision-language representations from image captions, which more literally describe
image content versus the longer ASR transcripts we consider. Tang et al. [109] use a pretrained
dense image captioner [59] to provide auxiliary labels for web how-to videos. Both approaches use
(supervised) ResNets pretrained on ImageNet [43] as their visual backbones. MERLOT is trained
using a combination of objectives requiring no manual supervision; it nonetheless outperforms both
prior approaches on downstream tasks.

2.3 Temporal ordering and forecasting

There has been a large body of work on analyzing ‘what happens next’ in videos [58]. Some modeling
choices include using pixels [34, 113], graphs [11], euclidean distance using sensors [3], or studying
cycle consistency across time [32]. In addition to extrapolation, past work has studied deshuffling
objectives in videos [82, 115], though this has mostly been limited to the visual modality. In contrast
to these papers, our goal is learning multimodal script knowledge representations: using both language
and vision as complementary views into the world, instead of just tracking what changes on-screen.

3 MERLOT: Multimodal Event Representation Learning Over Time

We now present our unified model for learning script knowledge through web videos; including our
pretraining dataset, architecture, and objectives.

3.1 YT-Temporal-180M

We collect YT-Temporal-180M, a dataset for learning multimodal script knowledge, derived from
6 million public YouTube videos. Our YT-Temporal-180M intentionally spans many domains,
datasets, and topics. We began with 27 million candidate video IDs (which we then filtered),
including instructional videos from HowTo100M [80], lifestyle vlogs of everyday events from the
VLOG dataset [35], and YouTube’s auto-suggested videos for popular topics like ‘science’ or ‘home
improvement.’ Our intent (in making the corpus as diverse as possible) was to encourage the model to
learn about a broad range of objects, actions, and scenes [47]: we will later show through an ablation
that limiting our pretraining to only instructional videos indeed hurts performance downstream.

We filtered videos using the YouTube API, which provides access to videos themselves, their ASR
track (automatically transcribed speech tokens), and other metadata. We discard videos 1) without

3

Image
Encoder

mask=
saw

Unmask words

…1,1CLS H,W

Image
Encoder

…CLS 1,1 H,W CLS …1 L 1 … LCLS

Word
embed

Word
embed

Joint Vision & Language Transformer Encoder

It’s thin plastic,
so it’ll be easy

to cut.

So I’ll cut it with
a circular

 .

It’s thin
plastic, so
it’ll be easy

to cut.

We’re
making a

green-
house.

So I’ll cut it
with a

circular
saw. …

For my
morning

routine, I …

Language only encoder

CLS

CLS

CLS

CLS

Temporal ordering

CLS CLS

CLS

CLS

I1
<latexit sha1_base64="tHqTJnnlCKH/zdB2eCAvj0PR4S0=">AAADLHicfVI7bxNBEN4cAcLxcqCkOWEhIQrrDpCgjAIFFIgg4SSSbVlz67G98j5Os3NJzMn/hBZKfg0NQrT8Dtb2FZxNGGk1337z3NnJC608p+mPnejK7tVr1/duxDdv3b5zt7V/79i7kiR2pdOOTnPwqJXFLivWeFoQgsk1nuSzV0v7yRmSV85+5HmBAwMTq8ZKAgdq2Gr1c6dHfm6Cqt4uhtmw1U476UqSbZDVoC1qORruR7v9kZOlQctSg/e9LC14UAGxkhoXcb/0WICcwQR7AVow6AfVqvVF8igwo2TsKBzLyYr9O6IC45fdBU8DPPWbtiX5L1uv5PHLQaVsUTJauS40LnXCLlnOIRkpQsl6HgBIUqHXRE6BQHKYVqOKKTUrcueNl1QStGwyE4JiquRFkyXUXn1qjuGSlOQ4/IqdNNncNO8l6Y1kjnC7RO7cjCH3lxZ+jeG3CN+Fyb0vkIAdPan6QBMDF4uq1v9zU3btFnQcx2Fvss0t2QbHTzvZs0764Xn74LDeoD3xQDwUj0UmXogD8UYcia6Q4kx8Fl/E1+hb9D36Gf1au0Y7dcx90ZDo9x85+A2n</latexit>

w1
<latexit sha1_base64="sTEL0r8VDkjYmmVTwdxHWnvNC+4=">AAADLHicfVI7bxNBEN4cAcLxcqCkOWEhIQrrDpCgjAIFDSJIOIlkW9bcemyvvI/T7FwS5+R/Qgslv4YGIVp+B2v7Cs4mjLSab7957uzkhVae0/THTnRt9/qNm3u34tt37t6739p/cOxdSRK70mlHpzl41MpilxVrPC0IweQaT/LZm6X95AzJK2c/8bzAgYGJVWMlgQM1bLX6udMjPzdBVeeLYTZstdNOupJkG2Q1aItajob70W5/5GRp0LLU4H0vSwseVECspMZF3C89FiBnMMFegBYM+kG1an2RPAnMKBk7CsdysmL/jqjA+GV3wdMAT/2mbUn+y9Yrefx6UClblIxWrguNS52wS5ZzSEaKULKeBwCSVOg1kVMgkBym1ahiSs2K3HnjJZUELZvMhKCYKnnRZAm1V5fNMVyRkhyHX7GTJpub5r0kvZHMEW6XyJ2bMeT+ysJvMfwW4fswuQ8FErCjZ1UfaGLgYlHV+n9uyq7dgo7jOOxNtrkl2+D4eSd70Uk/vmwfHNYbtCceicfiqcjEK3Eg3okj0RVSnInP4ov4Gn2Lvkc/o19r12injnkoGhL9/gO3ZA3V</latexit>

w2
<latexit sha1_base64="kP8HJ8BkHSgo7sjkR6uPqDDjaUc=">AAADLHicfVI7bxNBEN4cAcLxcqCkOWEhIQrrnCBBGQEFDSJIOIlkW9bcenxeeR+n2bkk5uR/Qgslv4YGIVp+B2v7Cs4mjLSab7957uxkhVae0/THTnRt9/qNm3u34tt37t6739p/cOJdSRJ70mlHZxl41MpijxVrPCsIwWQaT7PZ66X99BzJK2c/8rzAoYHcqomSwIEatVqDzOmxn5ugqovF6GDUaqeddCXJNujWoC1qOR7tR7uDsZOlQctSg/f9blrwsAJiJTUu4kHpsQA5gxz7AVow6IfVqvVF8iQw42TiKBzLyYr9O6IC45fdBU8DPPWbtiX5L1u/5MnLYaVsUTJauS40KXXCLlnOIRkrQsl6HgBIUqHXRE6BQHKYVqOKKTUrcheNl1QStGwyOUExVfKyyRJqrz41x3BFSnIcfsXmTTYzzXtJeiOZI9wukTk3Y8j8lYXfYPgtwndhcu8LJGBHz6oBUG7gclHV+n9uyq7dgo7jOOxNd3NLtsHJQad72Ek/PG8fvao3aE88Eo/FU9EVL8SReCuORU9IcS4+iy/ia/Qt+h79jH6tXaOdOuahaEj0+w+6Gw3W</latexit>I2

<latexit sha1_base64="0T1EbTjy0iPBkYnMzKeWGug007U=">AAADLHicfVI7bxNBEN4cAcLxcqCkOWEhIQrrLkGCMgIKKBBBwkkk27Lm1mN75X2cZudCzMn/hBZKfg0NQrT8Dtb2FZxNGGk1337z3NnJC608p+mPnejK7tVr1/duxDdv3b5zt7V/78S7kiR2pdOOznLwqJXFLivWeFYQgsk1nuazl0v76TmSV85+4HmBAwMTq8ZKAgdq2Gr1c6dHfm6Cqt4shgfDVjvtpCtJtkFWg7ao5Xi4H+32R06WBi1LDd73srTgQQXESmpcxP3SYwFyBhPsBWjBoB9Uq9YXyaPAjJKxo3AsJyv274gKjF92FzwN8NRv2pbkv2y9ksfPB5WyRclo5brQuNQJu2Q5h2SkCCXreQAgSYVeEzkFAslhWo0qptSsyH1svKSSoGWTmRAUUyUvmiyh9upTcwyXpCTH4VfspMnmpnkvSW8kc4TbJXLnZgy5v7TwKwy/Rfg2TO5dgQTs6EnVB5oYuFhUtf6fm7Jrt6DjOA57k21uyTY4Oehkh530/dP20Yt6g/bEA/FQPBaZeCaOxGtxLLpCinPxWXwRX6Nv0ffoZ/Rr7Rrt1DH3RUOi338APK8NqA==</latexit>

I1 � I2
<latexit sha1_base64="D5DNAoS+PZAa2P+leLVqHJBzSRQ=">AAADRXicfVLNbhMxEHaXQsvyl8KRi0WEBByi3RaJHivgAAdEkUhbKRtFs84kseKfxZ6FhlWegafhCkeegYfghriCk+yBTSgjWfP5mz/PePJCSU9J8n0rurR9+crO7tX42vUbN2+19m6feFs6gV1hlXVnOXhU0mCXJCk8KxyCzhWe5tNnC/vpe3ReWvOWZgX2NYyNHEkBFKhB62GWWzX0Mx1U9XI+SHkW4gW+42uG/UGrnXSSpfBNkNagzWo5HuxF29nQilKjIaHA+16aFNSvwJEUCudxVnosQExhjL0ADWj0/WrZ05zfD8yQj6wLxxBfsn9HVKD94nXBUwNN/LptQf7L1itpdNivpClKQiNWhUal4mT5YkB8KEP/pGYBgHAyvJWLCTgQFMbYqKJLRdLZD41OKgFKNJmxg2IixXmTdai8/NgcwwUpnaXwXWbcZHPdvJdOrSWzDjdL5NZOCXJ/YeHnGH7L4aswudcFOiDrHlUZuLGG83lV6/+5SbNyCzqO47A36fqWbIKT/U560EnePG4fPa03aJfdZffYA5ayJ+yIvWDHrMsE+8Q+sy/sa/Qt+hH9jH6tXKOtOuYOa0j0+w/YwRgi</latexit>

Contrastive
Frame-caption

matching
10

[MASK]

…

……

Figure 2: Left: MERLOT learns to match contextualized captions with their corresponding video
frames. Right: the same image encoding is provided, along with (masked) word embeddings, into a
joint vision-language Transformer model; it then unmasks ground words (like ‘saw’ in this example)
and puts scrambled video frames into the correct order.

an English ASR track; 2) that are over 20 minutes long; 3) that belong to visually “ungrounded"
categories like video game commentaries; and 4) that have thumbnails unlikely to contain objects,
according to a lightweight image classifier. We add punctuation to the ASR by applying a sequence-
to-sequence model trained to add punctuation to sentences/paragraphs from news articles. Full details
of the scraping and filtering are in Appendix A.

Each video V might contain thousands of frames. In this work, we represent a video V as a sequence
of consecutive video segments {st}. Each segment st consists of:

a. an image frame It, extracted from the middle timestep of the segment,
b. the words wt spoken during the segment, with a total length of L tokens.

To split the videos into segments, we byte-pair-encode (BPE; [97, 88]) each video transcript and align
tokens with YouTube’s word-level timestamps. This enables us to split the videos into segments of
L=32 BPE tokens each (Appendix A.4); our final dataset has 180 million segments of this form.

3.2 MERLOT Architecture

A diagram of MERLOT is given in Figure 2. MERLOT takes a sequence of video frames {st}
as input. We encode each frame It using an image encoder, embed the words wt using a learned
embedding, and jointly encode both using a Transformer [112]. After pretraining, the architecture
can be applied to a variety of vision-and-language tasks with minimal modification. For video QA,
for example, we pass several video frames to the image encoder, the question to the text encoder,
and extract a single vector representation from the CLS token position. For each task, we learn a
lightweight classification head mapping from this hidden state to the task’s label space; specific
modeling/optimization details are given in Appendix E.2.

Image encoder. We train our image encoder end-to-end, alongside the rest of the model, from
random initialization (thus without learning from supervised data). While most performant vision-
and-language models pre-extract features from a (supervised) object detector [108, 69, 75, 22, 68],
for the sake of pre-training efficiency we use a grid-based hybrid ResNet/Vision Transformer.1

Specifically: our encoder uses a ResNet-50 backbone, followed by a 12-layer, 768-dimensional Vision
Transformer [43, 112, 31]. We made additional modifications that improve efficiency, including:
1) we trained on smaller, widescreen images of size 192x352 (because most YouTube videos are

1Standard object detectors have expensive operations for proposing regions, and extracting features from
those regions (RoI-pooling); our grid approach avoids these. Recent work has proposed using ‘grid features’
broadly [53], yet on tasks like VCR these approaches have so far underperformed the more expensive object
detector backbones [123]; our results suggest that ‘grid features’ can perform well broadly.

4

widescreen) using a patch size of 16x16 pixels; 2) we mirror [31]’s alterations of removing the C5
block in ResNet-50; and 3) we save compute further by average-pooling the final-layer region cells
using a kernel size of 2 ⇥ 2. With these modifications, our image encoder requires 40 gigaFLOPs for
a forward pass, which is 2% of the 2 teraFLOPs required for the Faster-RCNN.

In summary: given an image of size W ⇥ H , the image encoder will output a W/32⇥H/32 feature
map, along with two CLS hidden states: one for pooling a global representation of the image, and
another for pretraining (Task 1.).

Joint Vision-Language Encoder. The joint encoder is a 12-layer, 768-dimensional Transformer
[112], mirroring the RoBERTa base architecture [72]; we initialize it with pretrained RoBERTa weights.
To compute joint representations, we first embed the tokens {wt} via lookup, and then add position
embeddings to both language and vision components (i.e., {It}). The position embeddings differ
between different segments, so as to distinguish between images and captions at different timesteps.
Finally, we pass the independent visual and textual feature maps to our joint encoder.

The tokens wt in each segment begin with a CLS token; recall that the feature maps for each frame It
start with one as well. At those positions, we will later pool final-layer hidden-state representations,
for use in pretraining along with downstream tasks.

3.3 Pretraining Tasks and Objectives

We use the following three objectives to pretrain MERLOT, that cover ‘full-stack’ visual reasoning –
from recognition subtasks (like object detection) that operate at the frame level, to more ‘cognitive’
tasks that operate at the video level.

1. Contrastive frame-transcript matching [126, 89]. We want to ensure that the underlying image
encoder produces helpful image representations. Thus, we use the video transcript to compute a
‘language-only’ representation of each video segment; and use a contrastive loss to maximize its
similarity to corresponding representations from the image encoder.2

Unlike what is the case for many image captions, the words wt in each segment are often not
sufficient to describe the gist of It, or even what the key objects might be – for that, video-level
contextualization is often required. We thus pass the entire transcript into the language-only
encoder, which then extracts hidden states for each segment at the segment-level CLS tokens.
Given matching representations for each frame It and caption wt as positive examples, the
negative examples come from all other frame-caption pairs in the batch – whether or not they
come from the same video. We project both of these representations into a size-768 hidden state
which is then unit-L2-normalized, and compute an all-pairs dot-product between all image and text
representations. We divide these logits by a temperature of ⌧ = 0.05, and then apply a pairwise
cross entropy loss to encourage matching captions and frames.

2. (Attention) Masked Language Modeling When providing words into the joint vision-and-
language encoder, we randomly replace 20% with a MASK token, a random word, or the same word;
MERLOT must then reconstruct the correct word with a cross-entropy loss, following [27].
This approach is commonly used by ‘visual BERT’ models in the image captioning domain, where
captions are concise, and thus the identity of masked concrete words is difficult for models to
recover given language context alone. However, we observed qualitatively that videos break these
assumptions: people tend to ramble, and often mention key objects multiple times. Thus, applying
vanilla BERT-style masking often causes ungrounded fillers like ‘umm’ or ‘yeah’ to get masked,
while the (repeated) names of important objects are often partially masked, penalizing the learning
of multimodal representations.
We introduce a simple solution to this problem, that we call attention masking: we use attention
weights from a language-only transformer (introduced in the previous objective) as a heuristic
for which words are grounded. 50% of the time, we mask out a random token; the other 50% of
the time, we mask out one of the top 20% most-attended-to-tokens. We then apply SpanBERT
masking [54], randomly corrupting the following or preceding tokens with an average length of
0.5 tokens in each direction; this makes it harder for models to over-rely on BPE artifacts. We
show in ablations that this improves performance.

2To save memory, our ‘language-only encoder’ for this subtask shares parameters with the joint vision-and-
language encoder.

5

Q→A QA→R Q→AR

ViLBERT [75] 73.3 74.6 54.8
Unicoder-VL [68] 73.4 74.4 54.9
VLBERT [69] 73.8 74.4 55.2
UNITER [22] 75.0 77.2 58.2
VILLA [36] 76.4 79.1 60.6
ERNIE-ViL [119] 77.0 80.3 62.1

MERLOT (base-sized) 80.6 80.4 65.1

Table 1: Results on VCR [123]. We compare
against SOTA models of the same ‘base’ size as
ours (12-layer vision-and-language Transform-
ers). MERLOT performs best on all metrics.

Spearman Pairwise acc Distance
(") (") (#)

CLIP [89] .609 78.7 .638
UNITER [22] .545 75.2 .745

MERLOT .733 84.5 .498

Table 2: Results unscrambling SIND visual
stories[50, 2]. Captions are provided in the cor-
rect order; models must arrange the images tem-
porally. MERLOT performs best on all metrics
by reasoning over the entire story, instead of in-
dependently matching images with captions.

3. Temporal Reordering. We have the model order the image frames in a video, forcing it to
explicitly learn temporal reasoning and giving it an interface to measure such temporal reasoning.
Here, 40% of the time, we randomly pick an integer i between 2 and N (the number of segments
provided to the joint encoder). Then we randomly scramble i video frames chosen at random, by
replacing the segment-level position embeddings (e.g. [image_t]) for that frame with a random
and unique position embedding, e.g. [image_unk_0]). These random position embeddings are
learned, and separate from the ‘unshuffled’ position embeddings. This allows the model to order
each ‘shuffled’ frame conditioned on frames provided in the correct order (if any).
To compute the reordering loss, we extract hidden states from each frame at the CLS token position.
For each pair of frames, we concatenate their hidden states hti and htj and pass the result through
a two-layer MLP, predicting if ti < tj or ti > tj . We optimize this using a cross-entropy loss.

3.4 Pretraining MERLOT

We pretrain our model for 40 epochs over our video dataset. We preprocess the dataset into examples
with sequences of N=16 video segments each, each containing up to L=32 BPE tokens.3 The
language-only encoder computes contrastive representations given this entire sequence, its total
length is thus 512 tokens. To save memory, we provide the joint vision-language encoder 4 groups
of N = 4 segments each. At an image training resolution of 192 ⇥ 352, the joint model’s sequence
length is 396 tokens. To combine the losses, we multiply the contrastive loss by a coefficient of 0.25,
which we found scaled its gradient magnitudes to roughly the same magnitude as the Mask LM loss.

We train the model using a v3-1024 TPU pod, at a batch size of 1024 sequences (or 16k segments) in
total. This pretraining process on this hardware takes 30 hours. We provide additional information
about hyperparameters and experimental setup in Appendix E.1.

4 Experiments: Transferring MERLOT to Downstream Tasks

In this section, we explore MERLOT on 14 different tasks, covering vision-language reasoning on
static images as well as videos; we present analysis and ablations to dig deeper into our performance.

4.1 Image tasks

VCR. We consider VCR [123], a task and dataset where models must answer commonsense visual
questions about images. These questions, about e.g. ‘what might happen next’ or ‘what are people’s
intentions,’ force MERLOT to transfer video-level understanding to the world of single images.

VCR provides additional ‘referring expression’ information to models in the form of bounding boxes
around named entities. For example, if Person1 is referenced in the question, the location of Person1
is also given in the image. We provide this information to models by drawing (in pixel space) a

3To train the model on as much data as possible, we merged together the segments of short videos, and split
up longer videos, such that all preprocessed examples in our dataset have exactly N=16 video segments.

6

Tasks Split Vid. Length ActBERT [127] ClipBERT8x2 [67] SOTA MERLOT

MSRVTT-QA Test Short - 37.4 41.5 [118] 43.1
MSR-VTT-MC Test Short 88.2 - 88.2 [127] 90.9

TGIF-Action Test Short - 82.8 82.8 [67] 94.0
TGIF-Transition Test Short - 87.8 87.8 [67] 96.2
TGIF-Frame QA Test Short - 60.3 60.3 [67] 69.5

LSMDC-FiB QA Test Short 48.6 - 48.6 [127] 52.9
LSMDC-MC Test Short - - 73.5 [121] 81.7

ActivityNetQA Test Long - - 38.9 [118] 41.4
Drama-QA Val Long - - 81.0 [56] 81.4
TVQA Test Long - - 76.2 [56] 78.7
TVQA+ Test Long - - 76.2 [56] 80.9
VLEP Test Long - - 67.5 [66] 68.4

Table 3: Comparison with state-of-the-art methods on video reasoning tasks. MERLOT outperforms
state of the art methods in 12 downstream tasks that involve short and long videos.

colored highlight around the referenced entity (Appendix E.3.1), this differs from prior works (that
integrate these entities into detection architectures).

Our results on the three VCR settings, in comparison to other models at the same (‘base’) scale, are
given in Table 1. Our model outperforms these other models, that all learn from exclusively static
images (paired with captions and supervised object detections).

Unsupervised ordering of Visual Stories. To probe our model’s ability to do out-of-the-box com-
monsense reasoning over events in images, we next consider the Visual Storytelling dataset [50, 74].
Each story in this dataset contains five images and captions in a certain order; the order tells a
joint narrative between the captions and the images. Past work has considered unshuffling image-
caption pairs [2], but we take a slightly different approach in this work to avoid language-only
biases, which can rely on discursive clues to order text [27, 102]. In our formulation, models are
given the captions in sorted order, and must match frames to the captions. Our formulation disarms
language-only baselines, while still allowing us to quantify MERLOT’s capacity for commonsense
temporal reasoning.

We compare MERLOT with two strong out-of-the-box baselines for text-image matching: CLIP [89],
which encodes each caption and image separately and computes similarity through a dot product, and
UNITER [22] which jointly represents each image/caption pair, and is trained in part using a ‘text-
image matching’ objective. We use our temporal reordering loss to find the most probable ordering of
the video frames (Appendix E.1.1); for CLIP and UNITER we compute a maximum-weight bipartite
matching [63] over the pairwise image-text similarity scores.

Results over 5K stories are given in Table 2. MERLOT’s performance in comparison to the algorithms
trained from image-literal caption pairs suggests that, with no fine-tuning, our model has strong
capability to reason about past and future events expressed in collections of temporal visual stories.

4.2 Video Reasoning

We report results on 12 video reasoning tasks: TVQA [64], TVQA(+) [65], VLEP [66], MSRVTT-QA
[117], MSRVTT-Multichoice [121], LSMDC-Multichoice, LSMDC fill-in-the-blank QA [110, 92],
ActivityNetQA [122, 45], TGIFQA [52], and DramaQA [23]. We apply MERLOT to these tasks
in the same way. We sample a sequence of 5 to 7 still frames from each video clip, initialize new
parameters only to map the model’s pooled CLS hidden state into the output labels, and finetune
MERLOT with a softmax cross entropy loss; see Appendix E.2 for details.

As shown in Table 3, for all these datasets MERLOT sets a new state-of-the-art. Given the diversity
of tasks and the strengths of the comparison models, these results provide strong evidence that
MERLOT learned strong multimodal and temporal representations.

4.3 Ablations

We present ablations over VCR and TVQA+ to study the effect of several modeling decisions.

7

Training setup VCR TVQA+
One segment (N=1) 73.8 75.2
One segment, attention masking 73.5 74.5
Four segments 74.1 73.3

Four segments, attention masking 75.2 75.8

(a) Context helps together with attention
masking. Pretraining on more segments at
once improves performance, but more context
can encourage language-only representation
learning. Attention masking counteracts this,
giving an additional 1 point boost.

Training setup VCR TVQA+
No contrastive V-L loss 57.5 67.6
No temporal ordering loss 75.5 75.6

All losses 75.2 75.8

(b) Contrastive V+L loss is cru-
cial. Removing it makes perfor-
mance drop significantly; the tem-
poral ordering loss is not as impor-
tant for downstream finetuning.

VCR

No boxes 74.8
Drawn-on boxes 79.4

(c) Drawing on
bounding boxes helps,
suggesting that our
model uses it to decode
the ‘referring expres-
sion’ information (e.g.
person1).

Dataset VCR
Conceptual [COCO 58.9
HowTo100M 66.3

YT-Temporal-180M 75.2
HowTo100M-sized YT-Temporal-180M 72.8
YTT180M, raw ASR 72.8

(d) Diverse (video) data is important. Applying our architecture to cap-
tion data leads to poor results. Our model performs better on HowTo100M,
yet still below our (more diverse) YT-Temporal-180M, even when con-
trolled for size. Using raw ASR (vs. denoised ASR) reduces performance.

epochs VCR

5 epochs 75.2
10 epochs 75.9
20 epochs 77.0
30 epochs 78.5

40 epochs 79.4

(e) Training for longer helps,
with performance increasing mono-
tonically over training iterations.

Table 4: Ablation study on the validation set of VCR question answering (Q ! A) and TVQA+, in
accuraty (%). We put a next to the configurations we chose for MERLOT.

Context size. Table 4a shows the effect of varying the number of segments N given to the joint
vision-and-language encoder during pretraining. In the first two rows, we provide only a single video
segment (N=1) to the model.4 In this limited regime, we find that our ‘attention masking’ approach
(preferential masking of tokens that were highly attended-to by the contrastive language-only encoder)
does not outperform a strong baseline of masking spans randomly [54]. Yet, when we expand the
sequence length to N=4 segments/128 tokens, our masking becomes more effective, improving by 1
point over the baseline. This supports our hypothesis (Section 3.3.2.) that text-only shortcuts become
increasingly viable with length, and that our attention-masking approach counteracts them.5

Losses. In Table 4b, we ablate the losses. We find that the contrastive frame-transcript matching loss
is crucial to performance, suggesting that an explicit objective is critical for the (randomly initialized)
image backbone to learn visual representations. The temporal ordering loss appears less critical for
downstream tasks; it helps for TVQA but performance drops slightly for VCR. Thus, we find that it
helps primarily as an interface by which we can query the model about temporal events (i.e. for the
story ordering experiments); the model might be learning this information from other objectives.

Drawing bounding boxes. Table 4c shows the effects of providing grounding information to VCR
models by drawing boxes. Performance drops 5% when they are removed, suggesting that they help.

Dataset source. In Table 4d, we investigate pretraining MERLOT on two datasets beyond YT-
Temporal-180M. First, we train on 3 million static image-caption pairs from Conceptual Captions
[99] combined with MSCOCO [71]; for fair comparison, we train for the same number of steps as
5 epochs on our dataset. The resulting model achieves 58.9% accuracy on VCR. We suspect this
might be due to 1) a smaller context window (Table 4a), and 2) overfitting (5 epochs on YT-Temporal-
180M corresponds to 300 epochs on the caption data). Because our vision pipeline is trained from
scratch, the scale of the curated/supervised image pairing corpora is a concern.

We next investigate the impact of video selection, comparing YT-Temporal-180M with HowTo100M
[80]. To control for number of videos, we train for an equivalent amount of steps: 5 epochs on
our dataset, 30 epochs on HowTo100M, and likewise 30 epochs on a ‘HowTo100M-sized YT-
Temporal-180M’. Using diverse YT-Temporal-180M data vs. only instructional videos improves
VCR performance by 6.5 points. This suggests that the how-to domain is limited in terms of visual

4We keep the effective batch size the same, so that we use 4⇥ the number of sequences at 1
4 th the length.

5Additional qualitative analyses of the attention patterns produced by the language-only encoder are in
Appendix C.1; we find that highly attended-to tokens are typically more ‘visual’, and, thus, masking them may
make the Masked LM objective require more cross-modal reasoning.

8

Figure 3: Zero-shot story ordering (same setup as Table 2). MERLOT performs temporal common-
sense reasoning accross frames. In the first row, it uses ‘the old man’ mentioned to identify the ‘kids’
as parent-aged; in the second, it identifies riding a merry-go-round as an activity that takes a while.

phenomena covered, and that other domains (like web dramas and VLOGs) provide helpful signal for
tasks like VCR [47]. Using all the data gives an additional 2.4-point performance boost.

Last, we investigate our choice to preprocess the YouTube ASR text with a language model (adding
punctuation, etc); using ‘raw ASR’ instead of this preprocessing reduces performance by 2.4 points.

Pretraining longer. Last, in Table 4e, we investigate the effect of pretraining MERLOT for longer.
The performance increases monotonically and doesn’t begin to plateau, which suggests that had we
pretrained MERLOT for even longer, its performance could improve even further.

4.4 Qualitative examples

In Figure 3, we show two qualitative examples of MERLOT’s zero-shot story ordering capability.
More examples (and a comparison with the best-scoring baseline, CLIP [89]) are in Appendix C.2.
The examples here show that MERLOT has a strong understanding of events, transcending individual
frames. In the first row, it orders the story correctly, performing vision-and-language coreference
across several frames (e.g. frames and captions 2 and 3 use ‘he’ to refer to ‘the old man’ only
mentioned in the first caption). Without resolving this coreference (establishing the subject as an
elderly family member), it seems unlikely that anyone would describe the adults in frame (3) as ‘kids.’
Investigating the attention patterns of MERLOT (Appendix C.3) backs up this claim; they show that
MERLOT frequently addresses video tasks by merging attention across (distant) video segments.

MERLOT gets the second row ‘wrong’, but for an interesting reason. It reverses the order of
frames (3) and (4), which groups the merry-go-round pictures together – even though caption (3)
mentions a barn. This seems to capture the temporal commonsense intuition that people might ride a
merry-go-round for a while, i.e., it is not an atomic event [25].

5 Conclusion, Limitations, and Broader Impacts

We introduced Multimodal Event Representation Learning Over Time (MERLOT). We trained the
model through a combination of self-supervised objectives on 6M YouTube videos, in service of
learning powerful multimodal representations that go beyond single frames. The model achieves
strong performance on tasks requiring event-level reasoning over videos and static images. We
hope that MERLOT can inspire future work for learning vision+language representations in a more
human-like fashion compared to learning from literal captions and their corresponding images.

There are several potential limitations of MERLOT that would make for promising avenues of future
work, including: 1) exploring finer-grained temporal reasoning pretraining objectives vs. frame
ordering e.g., a temporal frame localization within transcripts; and 2) learning multilingually from
non-English videos and communities on YouTube.

9

Like other pretraining work, MERLOT risks some potential negative impacts. We discuss these in
more detail below, in addition to the steps we took to reduce these harms.

5.1 Data collection and privacy.

As with other corpora gathered from the web used for pretraining data, YT-Temporal-180M contains
publicly available content posted by users. We thus shaped our data gathering and release strategy to
minimize inherent privacy and consent harms (Appendix A.5). Perhaps most importantly, we plan to
only share video IDs for download, following a release strategy from prior work [1, 80] and giving
users the right to opt out of not just YouTube, but our dataset as well.

5.2 Social biases.

The curation choices we made in this work could cause the model to exhibit undesirable social biases
– for this reason, along with others, we do not advocate for deployed use-cases. For example, 30%
of the data selected for by our filtering pipeline was local broadcast news (uploaded to YouTube).
Including these news videos seems to perform better than filtering them out and only using how-to
videos (Table 4b), however, there are risks when training on them. Local broadcast news (at least
in the US) dedicates significant time to covering crime, sometimes in a racist and sensationalized
manner [38, 29, 44]. Indeed, running a topic model over our data identifies several ‘crime’ categories
(Appendix B). Past work has shown correlation between watching local news and having more
explicit racialized beliefs about crime [28]; it seems likely therefore that training models on this data
could teach them learn the same racist patterns.

Additionally, there are inherent social biases on YouTube – and treating these videos as equivalent
to ‘the world’ [111] can embed hegemonic perspectives [42, 114, 13]. Most popular YouTubers
are men [30] and video practices emerging on YouTube are often gendered [83]. YouTube also has
problems with hate, including radical alt-right and ‘alt-lite’ content [90]. These problems – as with
other problems in representation and power – are themselves amplified by the ‘YouTube algorithm’
[15] that recommends content to users. Though we downloaded videos independently of YouTube’s
recommender system, by filtering based on what content has views, we are implicitly filtering based
on this algorithm. The dynamics of YouTube (i.e., which videos get popular/monetized) influence
the style and content of videos that get made and uploaded to the platform; this in turn shapes and is
shaped by culture more broadly [104].

5.3 Dual use.

The video QA tasks that we studied carry risk of dual use, through possible downstream applications
like surveillance [91, 128]. It seems unlikely that purely technological fixes and defenses – which
themselves can be problematic [40] – could resolve these dynamics. Studying how well video-level
pretraining enables surveillance applications might be an important avenue for future work, if only to
inform stakeholders and policymakers about these risks.

5.4 Energy consumption.

The pretraining that we used in this work was expensive upfront [105]. Our results suggest that
scaling up the amount of data and compute that we used might yield additional performance gains –
but at increased environmental cost. To pretrain more efficiently, we used a much more lightweight
architecture (in terms of FLOPs) than is standard for today’s vision and language models. We hope
that our public release of the model (for research use) can further amortize this cost.

5.5 Synthesizing these risks.

With these issues in mind, we release MERLOT and YT-Temporal-180M for researchers. We view
our work, and our research artifacts, to be part of a larger conversation on the limits of pretrained
‘foundation models’ [17]. These models have broad impact to real-world areas like healthcare, law,
and education. At the same time, these models have significant risks, including the harms that
we outlined. We believe that further academic research into this video-and-language pretraining
paradigm is important – especially to probe its limits and possible harms. We hope that our paper,
code, and data release can contribute to this direction.

10

Acknowledgements and Funding Transparency Statement

We thank the anonymous reviewers for their helpful feedback that improved this work, along with
Oren Etzioni and Gabriel Ilharco. Thanks also to Zak Stone and the Google Cloud TPU team
for providing access to the TPU machines used for conducting experiments, and for help with the
computing infrastructure. Last, but not least, thanks to all the YouTubers who share interesting
videos with the world. This work was funded by DARPA MCS program through NIWC Pacific
(N66001-19-2-4031), and the Allen Institute for AI.

References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakr-

ishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale video
classification benchmark. arXiv preprint arXiv:1609.08675, 2016.

[2] Harsh Agrawal, Arjun Chandrasekaran, Dhruv Batra, Devi Parikh, and Mohit Bansal. Sort
Story: Sorting Jumbled Images and Captions into Stories. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 925–931, 2016.

[3] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning
to poke by poking: experiential learning of intuitive physics. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, pages 5092–5100, 2016.

[4] Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and
Boqing Gong. VATT: transformers for multimodal self-supervised learning from raw video,
audio and text. arXiv preprint arXiv:2104.11178, 2021.

[5] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, and
Simon Lacoste-Julien. Unsupervised learning from narrated instruction videos. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4575–4583, 2016.

[6] Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, and Simon Lacoste-Julien. Joint discovery of
object states and manipulation actions. In ICCV, 2017.

[7] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider, Relja Arandjelović, Jason Rama-
puram, Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisserman. Self-
supervised multimodal versatile networks. arXiv preprint arXiv:2006.16228, 2020.

[8] Chris Alberti, Jeffrey Ling, Michael Collins, and David Reitter. Fusion of detected objects in
text for visual question answering. arXiv preprint arXiv:1908.05054, 2019.

[9] Elad Amrani, Rami Ben-Ari, Daniel Rotman, and Alex Bronstein. Noise estimation using
density estimation for self-supervised multimodal learning. arXiv preprint arXiv:2003.03186,
2020.

[10] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould,
and Lei Zhang. Bottom-up and top-down attention for image captioning and visual question
answering. In CVPR, 2018.

[11] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
kavukcuoglu. Interaction networks for learning about objects, relations and physics. In
Proceedings of the 30th International Conference on Neural Information Processing Systems,
pages 4509–4517, 2016.

[12] Emily Bender and Batya Friedman. Data statements for nlp: Toward mitigating system bias
and enabling better science. Transactions of the Association for Computational Linguistics,
2019.

[13] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021.

11

[14] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

[15] Sophie Bishop. Anxiety, panic and self-optimization: Inequalities and the youtube algorithm.
Convergence, 24(1):69–84, 2018.

[16] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[17] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv e-prints, pages arXiv–2108, 2021.

[18] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training
data from large language models. arXiv preprint arXiv:2012.07805, 2020.

[19] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and Juan Carlos Niebles. D3tw:
Discriminative differentiable dynamic time warping for weakly supervised action alignment
and segmentation. In CVPR, 2019.

[20] Snigdha Chaturvedi, Haoruo Peng, and Dan Roth. Story Comprehension for Predicting What
Happens Next. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1603–1614, 2017.

[21] Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei Wen, Mingkui
Tan, and Chuang Gan. Rspnet: Relative speed perception for unsupervised video representation
learning. In AAAI, 2021.

[22] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,
and Jingjing Liu. UNITER: Learning universal image-text representations. arXiv preprint
arXiv:1909.11740, 2019.

[23] Seongho Choi, Kyoung-Woon On, Yu-Jung Heo, Ahjeong Seo, Youwon Jang, Seungchan Lee,
Minsu Lee, and Byoung-Tak Zhang. DramaQA: character-centered video story understanding
with hierarchical qa. arXiv preprint arXiv:2005.03356, 2020.

[24] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does
bert look at? an analysis of bert’s attention. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276–286, 2019.

[25] William Croft. Verbs: Aspect and causal structure. OUP Oxford, 2012.

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. Ieee, 2009.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[28] Travis L Dixon. Crime news and racialized beliefs: Understanding the relationship between
local news viewing and perceptions of african americans and crime. Journal of Communication,
58(1):106–125, 2008.

[29] Travis L Dixon and Daniel Linz. Overrepresentation and underrepresentation of african
americans and latinos as lawbreakers on television news. Journal of communication, 50(2):
131–154, 2000.

[30] Nicola Döring and M Rohangis Mohseni. Male dominance and sexism on youtube: results of
three content analyses. Feminist Media Studies, 19(4):512–524, 2019.

12

[31] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[32] Dave Epstein, Jiajun Wu, Cordelia Schmid, and Chen Sun. Learning temporal dynamics from
cycles in narrated video. arXiv preprint arXiv:2101.02337, 2021.

[33] Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya Agrawal, Jacob Devlin, Ross
Girshick, Xiaodong He, Pushmeet Kohli, Dhruv Batra, C Lawrence Zitnick, et al. Visual
storytelling. arXiv preprint arXiv:1604.03968, 2016.

[34] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical
interaction through video prediction. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, pages 64–72, 2016.

[35] David F Fouhey, Wei-cheng Kuo, Alexei A Efros, and Jitendra Malik. From lifestyle vlogs to
everyday interactions. In CVPR, 2018.

[36] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-
scale adversarial training for vision-and-language representation learning. arXiv preprint
arXiv:2006.06195, 2020.

[37] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumeé III, and Kate Crawford. Datasheets for datasets. arXiv preprint
arXiv:1803.09010, 2018.

[38] Franklin D Gilliam Jr, Shanto Iyengar, Adam Simon, and Oliver Wright. Crime in black and
white: The violent, scary world of local news. Harvard International Journal of press/politics,
1(3):6–23, 1996.

[39] Jonathan Gordon and Benjamin Van Durme. Reporting bias and knowledge acquisition. In
Proceedings of the 2013 workshop on Automated knowledge base construction, pages 25–30.
ACM, 2013.

[40] Ben Green. Good” isn’t good enough. In Proceedings of the AI for Social Good workshop at
NeurIPS, 2019.

[41] Herbert P Grice. Logic and conversation. In Speech acts, pages 41–58. Brill, 1975.

[42] Donna Haraway. Situated knowledges: The science question in feminism and the privilege of
partial perspective. Feminist studies, 14(3):575–599, 1988.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[44] Don Heider. White news: Why local news programs don’t cover people of color. Routledge,
2014.

[45] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
A large-scale video benchmark for human activity understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 961–970, 2015.

[46] Jack Hessel, Bo Pang, Zhenhai Zhu, and Radu Soricut. A case study on combining ASR and
visual features for generating instructional video captions. In CoNLL, November 2019.

[47] Jack Hessel, Zhenhai Zhu, Bo Pang, and Radu Soricut. Beyond instructional videos: Probing
for more diverse visual-textual grounding on youtube. In EMNLP, 2020.

[48] Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

13

[49] De-An Huang, Joseph J. Lim, Li Fei-Fei, and Juan Carlos Niebles. Unsupervised visual-
linguistic reference resolution in instructional videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[50] Ting-Hao Kenneth Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya
Agrawal, Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli, Dhruv Batra,
C. Lawrence Zitnick, Devi Parikh, Lucy Vanderwende, Michel Galley, and Margaret Mitchell.
Visual storytelling. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
1233–1239, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1147. URL https://www.aclweb.org/anthology/N16-1147.

[51] Sarthak Jain and Byron C Wallace. Attention is not explanation. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 3543–3556, 2019.

[52] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. Tgif-qa: Toward
spatio-temporal reasoning in visual question answering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2017). Honolulu, Hawaii, pages 2680–8, 2017.

[53] Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, and Xinlei Chen. In
defense of grid features for visual question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10267–10276, 2020.

[54] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64–77, 2020.

[55] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. “my data just goes
everywhere:” user mental models of the internet and implications for privacy and security. In
Eleventh Symposium On Usable Privacy and Security ({SOUPS} 2015), pages 39–52, 2015.

[56] Seonhoon Kim, Seohyeong Jeong, Eun-Byul Kim, Inho Kang, and Nojun Kwak. Self-
supervised pre-training and contrastive representation learning for multiple-choice video qa.
ArXiv, abs/2009.08043, 2020.

[57] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without
convolution or region supervision. arXiv preprint arXiv:2102.03334, 2021.

[58] Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. Activity forecast-
ing. In European Conference on Computer Vision, pages 201–214. Springer, 2012.

[59] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-
Captioning Events in Videos. In International Conference on Computer Vision (ICCV), 2017.

[60] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting
language and vision using crowdsourced dense image annotations. International Journal of
Computer Vision, 123(1):32–73, 2017.

[61] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video database
for human motion recognition. In Proceedings of the International Conference on Computer
Vision (ICCV), 2011.

[62] Hilde Kuehne, Ahsan Iqbal, Alexander Richard, and Juergen Gall. Mining youtube-a dataset
for learning fine-grained action concepts from webly supervised video data. arXiv preprint
arXiv:1906.01012, 2019.

[63] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[64] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg. Tvqa: Localized, compositional video
question answering. In EMNLP, 2018.

14

https://www.aclweb.org/anthology/N16-1147

[65] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvqa+: Spatio-temporal grounding
for video question answering. In Tech Report, arXiv, 2019.

[66] Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. What is more likely to happen next?
video-and-language future event prediction. arXiv preprint arXiv:2010.07999, 2020.

[67] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and Jingjing Liu.
Less is more: Clipbert for video-and-language learning via sparse sampling. arXiv preprint
arXiv:2102.06183, 2021.

[68] Gen Li, Nan Duan, Yuejian Fang, Ming Gong, Daxin Jiang, and Ming Zhou. Unicoder-vl:
A universal encoder for vision and language by cross-modal pre-training. In AAAI, pages
11336–11344, 2020.

[69] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A
simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557,
2019.

[70] Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition without
representation bias. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 513–528, 2018.

[71] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[72] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[73] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[74] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection
with language priors. In European Conference on Computer Vision, 2016.

[75] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViLBERT: Pretraining task-agnostic vi-
siolinguistic representations for vision-and-language tasks. In Advances in Neural Information
Processing Systems, pages 13–23, 2019.

[76] Tegan Maharaj, Nicolas Ballas, Anna Rohrbach, Aaron C Courville, and Christopher Joseph
Pal. A dataset and exploration of models for understanding video data through fill-
in-the-blank question-answering. In Computer Vision and Pattern Recognition (CVPR),
2017. URL http://openaccess.thecvf.com/content_cvpr_2017/papers/Maharaj_

A_Dataset_and_CVPR_2017_paper.pdf.

[77] Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nick Johnston, Andrew Rabinovich, and
Kevin Murphy. What’s cookin’? interpreting cooking videos using text, speech and vision. In
NAACL, 2015.

[78] Alice E Marwick and danah boyd. Networked privacy: How teenagers negotiate context in
social media. New media & society, 16(7):1051–1067, 2014.

[79] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit. 2002. URL
http://mallet.cs.umass.edu.

[80] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and
Josef Sivic. HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million
Narrated Video Clips. In ICCV, 2019.

[81] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew
Zisserman. End-to-end learning of visual representations from uncurated instructional videos.
In CVPR, 2020.

15

http://openaccess.thecvf.com/content_cvpr_2017/papers/Maharaj_A_Dataset_and_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Maharaj_A_Dataset_and_CVPR_2017_paper.pdf
http://mallet.cs.umass.edu

[82] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning
using temporal order verification. In European Conference on Computer Vision, pages 527–544.
Springer, 2016.

[83] Heather Molyneaux, Susan O’Donnell, Kerri Gibson, Janice Singer, et al. Exploring the
gender divide on youtube: An analysis of the creation and reception of vlogs. American
Communication Journal, 10(2):1–14, 2008.

[84] Yasufumi Moriya, Ramon Sanabria, Florian Metze, and Gareth JF Jones. Grounding object
detections with transcriptions. arXiv preprint arXiv:1906.06147, 2019.

[85] Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pages
69–84, 2007.

[86] Shruti Palaskar, Jindrich Libovickỳ, Spandana Gella, and Florian Metze. Multimodal abstrac-
tive summarization for how2 videos. arXiv preprint arXiv:1906.07901, 2019.

[87] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia Schmid, and Vittorio Ferrari.
Learning object class detectors from weakly annotated video. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3282–3289. IEEE, 2012.

[88] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Technical report, OpenAI, 2019.

[89] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

[90] Manoel Horta Ribeiro, Raphael Ottoni, Robert West, Virgílio AF Almeida, and Wagner
Meira Jr. Auditing radicalization pathways on youtube. In Proceedings of the 2020 conference
on fairness, accountability, and transparency, pages 131–141, 2020.

[91] Neil M Richards. The dangers of surveillance. Harv. L. Rev., 126:1934, 2012.

[92] Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket Tandon, Chris Pal, Hugo
Larochelle, Aaron Courville, and Bernt Schiele. Movie description. International Jour-
nal of Computer Vision, 2017. URL http://link.springer.com/article/10.1007/

s11263-016-0987-1?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst.

[93] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[94] Oleksandr Savsunenko. How tensorflow’s tf.image.resize stole 60 days of my life. Technical
report, Hacker Noon.

[95] Roger C. Schank and Robert P. Abelson. Scripts, plans, and knowledge. In Proceedings
of the 4th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’75,
pages 151–157, San Francisco, CA, USA, 1975. Morgan Kaufmann Publishers Inc. URL
http://dl.acm.org/citation.cfm?id=1624626.1624649.

[96] Ozan Sener, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Unsupervised semantic
parsing of video collections. In ICCV, 2015.

[97] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

[98] Sofia Serrano and Noah A Smith. Is attention interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 2931–2951, 2019.

[99] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2556–2565, 2018.

16

http://link.springer.com/article/10.1007/s11263-016-0987-1?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst
http://link.springer.com/article/10.1007/s11263-016-0987-1?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst
http://dl.acm.org/citation.cfm?id=1624626.1624649

[100] Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang,
Zhewei Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? arXiv
preprint arXiv:2107.06383, 2021.

[101] Botian Shi, Lei Ji, Yaobo Liang, Nan Duan, Peng Chen, Zhendong Niu, and Ming Zhou. Dense
procedure captioning in narrated instructional videos. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 6382–6391, 2019.

[102] Wei Shi and Vera Demberg. Next sentence prediction helps implicit discourse relation
classification within and across domains. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 5794–5800, 2019.

[103] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human action
classes from videos in the wild. Center for Research in Computer Vision, 2(11), 2012.

[104] Michael Strangelove. Watching YouTube. University of Toronto press, 2020.

[105] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations
for deep learning in nlp. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3645–3650, 2019.

[106] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia Schmid. Contrastive bidirectional
transformer for temporal representation learning. arXiv preprint arXiv:1906.05743, 2019.

[107] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. VideoBERT:
A joint model for video and language representation learning. In ICCV, 2019.

[108] Hao Tan and Mohit Bansal. LXMERT: Learning cross-modality encoder representations from
transformers. In EMNLP, 2019.

[109] Zineng Tang, Jie Lei, and Mohit Bansal. Decembert: Learning from noisy instructional videos
via dense captions and entropy minimization. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 2415–2426, 2021.

[110] Atousa Torabi, Niket Tandon, and Leon Sigal. Learning language-visual embedding for movie
understanding with natural-language. arXiv preprint, 2016. URL http://arxiv.org/pdf/

1609.08124v1.pdf.

[111] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1521–1528. IEEE, 2011.

[112] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[113] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An uncertain future:
Forecasting from static images using variational autoencoders. In European Conference on
Computer Vision, pages 835–851. Springer, 2016.

[114] Zeerak Waseem, Smarika Lulz, Joachim Bingel, and Isabelle Augenstein. Disembodied
machine learning: On the illusion of objectivity in nlp. arXiv preprint arXiv:2101.11974,
2021.

[115] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman. Learning and using
the arrow of time. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8052–8060, 2018.

[116] Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 11–20, 2019.

17

http://arxiv.org/pdf/1609.08124v1.pdf
http://arxiv.org/pdf/1609.08124v1.pdf

[117] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang.
Video question answering via gradually refined attention over appearance and motion. In
Proceedings of the 25th ACM international conference on Multimedia, pages 1645–1653,
2017.

[118] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Just ask: Learn-
ing to answer questions from millions of narrated videos. arXiv preprint arXiv:2012.00451,
2020.

[119] Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-vil:
Knowledge enhanced vision-language representations through scene graph. arXiv preprint
arXiv:2006.16934, 2020.

[120] Shoou-I Yu, Lu Jiang, and Alexander Hauptmann. Instructional videos for unsupervised
harvesting and learning of action examples. In ACM MM, 2014.

[121] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint sequence fusion model for video
question answering and retrieval. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 471–487, 2018.

[122] Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao.
ActivityNet-QA: a dataset for understanding complex web videos via question answering. In
AAAI, pages 9127–9134, 2019.

[123] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition:
Visual commonsense reasoning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6720–6731, 2019.

[124] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner,
and Yejin Choi. Defending against neural fake news. In Advances in Neural Information
Processing Systems 32, 2019.

[125] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin
Choi, and Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models.
arXiv preprint arXiv:2101.00529, 2021.

[126] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz.
Contrastive learning of medical visual representations from paired images and text. arXiv
preprint arXiv:2010.00747, 2020.

[127] Linchao Zhu and Yi Yang. ActBERT: Learning global-local video-text representations. In
CVPR, 2020.

[128] Shoshana Zuboff. Big other: surveillance capitalism and the prospects of an information
civilization. Journal of Information Technology, 30(1):75–89, 2015.

18

Supplemental Material

We present the following items in the supplemental:

a. Data collection information (Section A)
b. An exploration of the data in our corpus (Section B)
c. Qualitative analysis of model representations (Section C)
d. An exploration of the intermediate visual representations (Section D)
e. Hyperparameters and experimental setup used for all experiments (Section E)
f. A Datasheet [37] for our YT-Temporal-180M dataset (Section F)

A Collecting Videos and Transcripts from YouTube

We adopt the following high-level process to collect YouTube videos and their accompanying
transcripts:

a. Collect channel pages that are likely to cover visually-textually grounded events (A.1),
b. Download videos from each channel, while filtering out videos without English ASR

captions, or unlikely to have (changing) real-world scenes and objects (A.2),
c. ‘Denoise’ the transcripts – using a language model to rewrite transcripts in a style more

similar to written English, as opposed to spoken English (A.3),
d. Last, align words in the transcript to video frames, and extract the segments for pretraining

(A.4).

As we will discuss in more detail in the following subsections, we designed our strategy to preserve
user privacy as much as possible – an imperative when constructing a corpus on public-facing
multimodal data. We conclude with a high-level summary of these privacy-preserving decisions, as
well as about our release strategy (A.5).

A.1 Collecting channel IDs + video IDs

The first stage in our pipeline was to collect YouTube video IDs that could potentially be relevant for
learning visual-textual relationships. We opted to search for interesting channels rather than search
for videos directly, as we found the API limits for searching for videos somewhat restrictive. Once a
channel was downloaded, we could then download its videos.

We found channels using YouTube’s auto-generated ‘topic’ pages, corresponding to entries in
FreeBase like ‘Science’ or ‘Home Improvement.’ We identified 18 of these topics, and retrieved the
IDs for all channels that were linked to by each topic page. We also used YouTube channels that
appeared in the VLOG dataset [35], as well as a selection of viral ‘How-To’ and ‘Cooking’ channels.
Last, we searched YouTube for concrete nouns, using the object list from MSCOCO (‘baseball’,
‘snowboard’, etc.) as a starting point; we retrieved channel IDs for each video that appeared.

Channels on YouTube often feature other (often similar) channels; so we downloaded more channel
IDs by performing a graph breadth-first search over the initial set of channels. We identified 50k
channels total and filtered out any more ‘personal’ channels (with fewer than 10k views between all
videos). Last, we gathered all video IDs that came from our list of channels, which left us with 27
million video IDs, which formed our final candidate list.

Privacy implications. Our high-level goal was to preserve user privacy by mainly using popular (and
more monetized) YouTube videos and channels in our dataset, as opposed to personal ones. The
YouTube search algorithm helped us do that, by ordering results (in part) by the popularity of a video
/ channel. Downloading all videos from a channel, and filtering out channels with fewer than 10k
views, favors popular content (like for celebrities, professional YouTubers, and cable news stations).
Our analysis in Appendix B shows this strategy was largely successful.

Connection with HowTo100M. As discussed in the paper, we used both a diverse selection of YouTube
videos (coming from this process), as well as the video list from HowTo100M [80]. We simply

19

concatenated the video IDs from HowTo100M with the video IDs from this searching step. This
means first, that the HowTo100M videos were also filtered by the next steps (and thus our copy of
HowTo100M is slightly smaller than the original), though we found that the filtering step had minimal
impact on those videos (that were already filtered by [80]). Second, it means that the HowTo100M
videos do contain some instructional videos from less-popular channels. Our intuition here is that
this might be okay from a privacy standpoint: few of these people are discussing personal topics; a
typical example might be a grainy video of somebody baking cookies. Nonetheless, given the scale
that we operated at ourselves, we tried to be more cautious with the filtering.

A.2 Filtering out videos

After retrieving a set of video IDs, our next step was to download ones likely to be appropriate
for pre-training MERLOT. Not all videos would are likely to work well: many videos have no
spoken words, are not in English, or otherwise do not have automatically-generated (ASR) captions.
Likewise, many videos are not grounded: some just have still images (like podcasts), some are of
people talking to each other or to the camera, and many are of people playing video games. Our
intention was to filter out these videos, ideally without having to download them (so as to conserve
bandwidth).

For each video ID, we perform the following steps:

• Downloading info: YouTube allows us to download the video metadata separately from each
video. We do this first as the video info file is much smaller than the video itself. We thus
first (try to) download this file. We exit here if one of the following conditions are met:

– the video was removed,
– the video is categorized as a ‘Gaming’ video,
– the video does not contain any English ASR captions,
– the video is over 20 minutes long (and thus might be overly expensive to download).

• Inspecting thumbnails: the YouTube API has a hidden feature that allows us to download four
thumbnails [35]; in terms of bandwidth usage, this is often much cheaper than downloading
the whole video. We use these thumbnails as a proxy as to whether the entire video is
likely suitable for pretraining.6 We trained a lightweight MobileNet-V2 CNN [93] to score
whether a COCO object class is present in an image or not, using a sigmoid cross entropy
loss. We exit here if one of the following conditions are met:

– the CNN classifies fewer than four COCO objects as being ‘present’ over the four
frames, using a minimum threshold of 30% probability for an object to be counted
as being ‘present.’ This is mainly to recognize scenes with people, as opposed to
animations, landscape footage, or blank/placeholder slides.

– The average cosine similarity between all feature representations (computed by the
classifier) is over 0.9; this allows us to skip videos that have no visual variance (like a
person sitting in front of a camera for the whole video, or an album cover while a song
is playing).

• Downloading the video: if we have not exited yet, we download the video.

A.3 Denoising ASR Captions

One concern with pretraining on ASR is that written text may differ from spoken text: thus, when
transferring to downstream tasks based on written corpora, models pretrained on spoken transcriptions
may not transfer well. Also, ASR generated by YouTube does not include punctuation or capitalization.
Furthermore, ASR transcripts can contain errors, e.g., by mistranscribing rare words/proper nouns
and instead predicting incorrect, but similarly pronounced, words. And finally, YouTube’s ASR
system sometimes attempts to translate text from a different language to English, which is sometimes
successful, but other times produces nonsense.

6Note that YouTube thumbnails are also (algorithmically) curated: when thumbnails aren’t hand-selected
by the uploader, YouTube’s thumbnail selection algorithm selects high quality, clear frames. https://ai.
googleblog.com/2015/10/improving-youtube-video-thumbnails-with.html

20

https://ai.googleblog.com/2015/10/improving-youtube-video-thumbnails-with.html
https://ai.googleblog.com/2015/10/improving-youtube-video-thumbnails-with.html

We aim to sidestep these issues by using a language model to ‘denoise’ ASR text, as well to filter
out excessively noisy transcripts. We use a GROVER-Large language model to do this [124], as it
was exclusively pretrained on written text from news articles. Then, we finetuned it in a sequence-to-
sequence setting to ‘denoise’ ASR.

We created data for our ‘denoising’ task using the following procedure. Given an article from
RealNews [124], we would trim it to 600 BPE tokens, and perform the following corruptions:

• We lowercase all text, and remove all punctuation.

• For each word (splitting by whitespace), we replace it with a random word 1% of the time.
Within this 1%, 25% of the time, we use the CMU Pronouncing Dictionary7 to swap-in a
word with identical pronunciation (to simulate mistranscriptions), and 75% of the time we
use a random sequence of BPE tokens of the same length as the actual word.

• For each word, 1% of the time we insert a ‘filler word’ before it, such as ‘umm,’ ‘hmm,’ or
‘yeah.’

The model was trained to generate the ‘noisy’ news article, followed by a ‘START’ token, then the
original ‘clean’ news article, and then an ‘END’ token; all using a standard cross-entropy loss. We
prioritize learning the ‘clean’ text by multiplying the loss on the initial ‘noisy’ tokens by 0.01. We
trained this model using a batch size of 256 sequences of maximum sequence length 1536, a learning
rate of 1e-5, and 80k steps.

The result is a model that not only attempts to fix mistranscriptions and corruptions, but also adds
punctuation and capitalization. The model also produces an estimated likelihood of the ASR caption
track, which we later use to filter out videos with very low quality ASR transcripts, e.g., poorly
translated transcripts.

We apply the model to each video’s transcript that survived the described filtration, breaking up long
transcripts into groups of 512 tokens. These groups are handed as input to the model, and Nucleus
Sampling (with p=0.9) [48] is used to generate a cleaned transcript for the group. We exit, filtering
out the entire video, if any group has a perplexity of over 200. Finally, we concatenated all the groups
together to form a ‘clean’ transcript.

A.4 Putting everything together: aligning videos and cleaned transcripts to frames

To recap, at this stage in the pipeline, for each video, we have the video file, along with the original
ASR transcript (with words, as well as timestamps for each word), and the cleaned ASR caption
(without timing info). To estimate timing info for the clean transcript, we align the noisy and cleaned
transcripts on a word-by-word level using Dynamic Time Warping [85]; word-word distance is
computed using Levenstein distance. The timing estimate for a cleaned token was computed as the
average of the noisy tokens assigned to it in this alignment.

Finally, given a video and its cleaned, per-word timed transcript, we sought to extract corresponding
video frames – the data format we rely on for pretraining. We start with (empty) buffers of at most
L = 32 tokens for both the original, and noisy transcripts. We loop through the (aligned) clean
and noisy transcripts, and add the tokens to their respective buffers. If adding the next word would
cause the buffer to exceed L = 32 tokens in length, we commit the segment – returning the noisy
ASR text, along with the clean text, and timing information. We then extract a frame from the video
corresponding to the middle of that segment. We do this until the end of the video. We use the GPT2
BPE encoder for this [97, 88], as was also widely adopted in later work (e.g. RoBERTa [72]).

Not all videos fit neatly into 16 segments, which was the format we used for training. Thus, we
merged segments from videos shorter than 16 segments, and for longer videos, we split them into
multiple examples. We didn’t use any video sequence-level padding: all of our dataset examples have
16 valid frames, even though we did include padding at the token level (so many segments had fewer
than L = 32 tokens).

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict

21

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

A.5 Summary - scraping while preserving privacy

As we discussed in the sections above, we tailored our scraping process to protect user privacy. It
should be mentioned here that we focused on public videos. Possibly due to cues of engagement like
view/subscriber counts, users on YouTube appear to understand the privacy implications of uploading
a ‘public’ video [55], differentiating YouTube from more private venues, like email and social media.
Under Marwick and boyd [78]’s framework of networked privacy, when web users (particularly those
with less viewership) upload public videos, they are often ‘being in public without being public.’
The idea behind this distinction is that web users, understanding that their content might be visible
to others, tend to avoid sharing overly private data (like their phone number or date of birth); the
information that they do share is often encoded (i.e., referring to a friend by their first name, not their
full name). Finally, we took extra steps to filter out more ‘personal’ videos (without many views);
our analysis in Appendix B shows this strategy was largely successful.

An additional aspect of our approach, as it relates to privacy, was our decision to use a diverse
selection of channels. We did this to minimize risks of models ‘overfitting’ to specific individuals –
a risk evidenced by a large GPT2 model memorizing users’ phone numbers [18]. We believe that
training a base-sized model in a large- and diverse-data regime minimizes many of the harms in this
case; that said, the risk in the multimodal (video) space is unclear as of yet, and more research is
needed.

Finally, we do not plan on releasing videos for download, only their IDs, following a strategy from
prior work [1, 80]. This gives users an explicit ‘right to be forgotten’ not just from YouTube, but
our data as well. We understand that this might make exact reproducibility difficult; we address
this by releasing code for our filtering process. Thus, if in the future, if N videos get deleted from
YT-Temporal-180M, a practitioner can download N new YouTube videos that pass through the same
filters that we used.

B Data Exploration

Curating large pretraining corpora necessitates some ad-hoc decisions, e.g., what data to search for,
what data to keep/discard, etc., and our work is no exception. The described data extraction pipeline
contains several heuristics that we developed based on our subjective experiences (and per-step,
heuristic validations) curating the corpus. While it isn’t computationally feasible ablate each stage of
this pipeline (and examine each decision’s effect on downstream performance), we seek to quantify
some basic of the properties of the corpus.

Validity Check We randomly sampled 100 videos from the corpus, and answered the following
basic questions for each of the videos: Q1: Does the video contain language utterances? Q2: If
so, is the language primarily English? Q3: Is the video an instructional video, i.e., is it an attempt
to teach the viewer how to undertake a task?8 Q4: What type of entity created the video: a small
youtuber (<10K subscribers); a medium youtuber (<100K, >10K subscribers); or a large youtuber
(>100K subscribers); a news station; or a media company. Q5: Is the video a music video? Q6: Is
the video a video game commentary?

Of the 100 examined videos, none were music videos or video game commentaries (Q5/Q6). The
videos were mostly not instructional (84%) (Q3) and mostly in English (86%) (Q2); non-English
videos nonetheless can have an English ASR track provided by the YouTube API if the spoken
language is transcribed by YouTube via its auto-translate feature. And while all contained language
utterances (Q1), at least one translated transcript had a very low quality transcription, which was only
loosely semantically related to the underlying content. Finally, the most common video creators were
news studios (29%; e.g., local news channels); big YouTubers (26%; e.g., popular vloggers), and
media companies (24%; e.g., Major League Baseball). Also included, but in lesser proportion, were
small YouTubers (8%), and TV studios (1%; e.g., official movie trailers).

Content Exploration What topics are covered by the corpus? We randomly sampled 55K video
transcripts, and ran an LDA topic model [16] implemented in MALLET [79] with 100 topics. We
used a vocab size of 25K word types that appear in at least 25 transcripts, but in no more than 10% of

8A similar definition was proposed in [47].

22

Figure 4: TSNE of topic distri-
butions for 7K sampled docu-
ments.

Sports goal win match points ball games goals played players
Baking sugar mix cup butter recipe flour oven dough bowl
Legal court law justice judge investigation report prison
LifeVlog excited vlog tomorrow literally camera bed yesterday
Cooking sauce cook oil chicken salt garlic pepper cooking

Table 5: Several common topics, derived from the transcripts of YT-
Temporal-180M, represented by the most common words of those
topics.

transcripts. The topics suggest diverse coverage, e.g., topics about specific sports (boxing, soccer),
US and world politics, fashion, construction, fantasy settings, nail painting, etc. We use TSNE to
visualize the per-document topic distributions, and color a sample of documents according to their
top topic in Figure 4 (topic details in Table 5).

Overall, the topical coverage of YT-Temporal-180M, at least according to a topic model trained on the
transcripts of a sample of videos, is broader than comparable-in-size video corpora like HowTo100M
[80]. And, experiments in the main paper demonstrate that this diversity is apparently helpful for a
number of downstream tasks.

C Qualitative Analysis of Model Representations

In this section, we provide more qualitative analysis about the representations learned by MERLOT.

C.1 Analysis of the language-only encoder, and attention masking during pretraining

Early on in this project, when inspecting qualitative examples, we observed that using BERT-style
masked language modeling [27] – choosing 15% randomly selected BPE tokens as the prediction
targets, and replacing them with MASK 80% of the time, or a random token 10% of the time – produced
overly easy examples.

This has been observed by other work in the text-only setting: when long words get partially masked,
it is often easy to recover the missing BPE token from the context, which motivated Joshi et al. [54]’s
choice to mask out entire spans instead. However, our goal in multimodal pretraining is different.
We want the model to learn grounded representations of events, such that even when we scale up the
number of segments given to the model, the model has to construct a multimodal representation of
what happened. Thus, in our setup, we wanted to encourage masking out highly visual words, to
learn cross-modal representations.

Instead of masking randomly, recall that we used the attention weights produced by the language-only
encoder (trained to match a sequence of captions to individual frames) to inform which tokens to
mask. While we do not claim that these attention weights provide a full explanation of the model
behavior [51, 98], they do play some role in the model’s decision [116], and we find that our masking
strategy improves performance on downstream tasks by around 1% (Table 4), versus a SpanBERT
baseline [54].

We show qualitative examples that seem to back up our hypothesis in Figures 5 and 6. In Figure 5, for
instance, the video shows a VLOG of an adult playing with children and talking the camera. Tokens
flagged by our approach as having high attention weights (being in the top 20% of all tokens in the
sequence, in terms of other positions attending to that token) include concrete words like ‘scissors’
and ‘toys.’ Even though scissors are not shown in the selected frames, that word might be a good
prediction target, insofar as it might complete a picture of what is going on in the first few frames:
somehow, the adult is able to open the package with the child’s toy, which could require scissors.

23

Figure 5: Attention masking for a video
of 16 frames. Our model’s image encoder
learns image representations independently
for each frame. A language-only encoder
model takes in the entire transcript (with 32
words at most per frame) and computes hid-
den representations for each segment. The
language encoder thus takes advantage of
the inherent contextuality over time; each
individual caption is not enough to under-
stand the frame in isolation.
We use the language encoder’s attention
weights to mask out words. Tokens that
are highly attended to (with the overall at-
tention weights in the middle column) are
shown in red and bolded. These tokens
tend to be more grounded, e.g. the word
‘toys’ in the second row. The final input
to the joint vision-and-language model is
shown in the third column. We mask out
highly attended-to words (except special to-
kens like ‘START’), 50% of the time, which
makes the pretraining objective much more
visual than masking out random words (of-
ten fillers like ‘on’ or ‘okay’).

24

Figure 6: Another example of our mask-
ing approach, the same format as Figure 5.
This shows an instructional video. Note the
highly attended to tokens that get masked
out (like ‘ice’, ‘O-ring’ and ‘lid.’) Seeing
those objects in the image (not just through
reading about them) is key to understand
what the video is about – someone making
iced tea in a mason jar.

25

Constant RSPNet [21] MERLOT-VizBranch CLIP ViT-B/16 [89]

UCF-101 [103] 1.1 61.8 74.9 87.1
HMDB-51 [61] 2.0 42.8 49.6 62.4

Table 6: Linear probing classification accuracy of a MERLOT’s intermediate visual representations
(higher=better).

Additionally, in Figure 6, showing an instructional video for both making iced tea and putting it in a
sealed mason jar, concrete nouns such as ‘o-rings’ get masked out.

Nevertheless, there are still several cases where the model seems to assign attention weights to
apparently non-visual tokens. The model places a lot of attention on the START token, a pattern
noticed by prior work as well [24], perhaps because we pool representations from those positions (for
matching with the video frames). However, we never select the START token for masking in our work,
so this might not highly affect the learning signal. Perhaps more strangely, language-only encoder
seems to attend highly to the final token in contractions (like ’t and ’s). It is not clear to us whether
these represent something important visually, or noise; we leave a more in-depth investigation of this
phenomenon to future work.

C.2 More qualitative examples for zero-shot story ordering

In this section, we show more examples of MERLOT unshuffling visual stories in SIND [50, 33].
We compare our model’s zero-shot results (using the logits from its temporal-ordering objective) to
CLIP’s [89] independent matching of each caption with each image (using the Hungarian algorithm
to find the best-scoring assignment [63]).

In Figures 7 and 8, we show expanded versions of Figure 3, comparing to CLIP. The examples
show that MERLOT has a strong understanding of events that transcends individual frames. Unlike
MERLOT, CLIP can only match captions independently to images, so in the first row it struggles to
connect ‘his kids’ with the middle-aged children of ‘the old man’ In the second row, it matches the
barn image with the caption ‘they also had a barn’, while it is unable to keep all the merry-go-round
images together (as MERLOT does).

We show additional examples in Figures 9 and 10. Our model provides a reasonable ordering to
the ‘kayaking’ example (Figure 9), which is evident of multimodal script knowledge: first, people
have to get ready to go kayaking (which they do on land!) and then they go out onto the water, and
finally come back. The ordering of the tennis match (Figure ??) seems reasonable as well. Unlike
CLIP, MERLOT groups together frames (3) and (4) – the players first serving the tennis ball, and
then awaiting the return.

C.3 Attention patterns

Finally, we show examples of the attention patterns produced by MERLOT, when it reasons over
both vision-and-language content at a video level. Plots are shown in Figure 11. Overall, the model
frequently links together visual regions with similar concepts in text, even when they get mentioned
far away in time.

Though these attention patterns should be taken with a grain of salt, as they are not necessarily
explanatory of the model’s decision [51, 98], we find it promising that the model attends globally
over all frames and captions – rather than ignoring one modality or ignoring the temporal dimension.
We leave further investigation of the model’s attention patterns and behavior to future work.

D Linear Probe of Intermediate Visual Representations

Our goal with MERLOT was to learn about situations expressed through videos and language.
However, as it includes a vision encoder that we trained from scratch, a reasonable question is how
this visual encoder compares to other encoders (e.g., that were trained through image captions). To
this end, we performed linear probing experiments over two activity recognition datasets: HMDB-51

26

Figure 7: Zero-shot story unscrambling; continuation of Figure 3 with the CLIP baseline [89]. MER-

LOT successfully orders the story, performing cross-modal coreference over several images to note
that ‘He’ in image (2) refers to ‘the old man’ mentioned in (1). The narrative that MERLOT generated
also makes sense at an event level: people are riding the escalator, then they get to the top, then they
exit and do something else; maximizing caption-image similarity of all pairs independently misses
this event-level coherence.

Figure 8: An incorrect story unshuffling example – but for an interesting reason. Frames (1), (2), and
(4) all involve people riding a merry-go-round, and MERLOT keeps them together even though the
ground truth story labels have the ‘barn’ image, (3), in between.

27

Figure 9: A second zero-shot story ordering example. MERLOT unshuffles the frames, while
grouping together frames (1) and (2) – which make sense as they are in the stage of the event where
they are preparing to go. CLIP instead puts frame (4) first, which matches caption (1) indepedently,
but doesn’t make sense temporally in context.

Figure 10: A second zero-shot story ordering example. There are a variety of potential ‘reasonable’
orderings for this example; both models get this one ‘incorrect.’ MERLOT’s ordering suggests
someone first looking into the tennis match on the outside, and then cutting to watch the match more
closely. On the other hand, CLIP switches between a shot of someone serving, back to the outside
TV, and then inside again.

28

Figure
11:A

dditionalqualitative
exam

ples
of

M
E

R
L
O

T’s
attention

patterns,aggregated
overalllayers

ofthe
jointvision-language

encoder.C
ells

on
the

top
attend

to
cells

on
the

bottom
;w

e
only

show
three

attention
edges

perquery,so
as

to
reduce

clutter.
In

red,w
e

show
visualpatchesattending

to
othervisualpatches;in

gold,w
e

show
tokensattending

to
visualpatches;in

tealw
e

show
tokensattending

to
tokens,and

in
purple

w
e

show
patches

attending
to

tokens.
The

firstrow
seem

sto
show

a
touristin

the
U

nited
K

ingdom
.In

the
third

segm
ent,the

narratordiscussesa
‘gothic

style
house’even

though
only

the
gate

isshow
n

in
the

fram
e;those

tokens
attend

highly
to

the
house

w
hen

itis
show

n
in

the
fourth

fram
e.

The
second

row
show

s
som

eone
ata

factory
forD

r.B
ronner’s

Soap.The
factory

w
orkerin

the
third

fram
e

seem
s

highly
attended

to,particularly
by

the
tokens

‘applied
by

hand’w
hich

appearin
the

second
caption.

The
third

row
show

s
a

dinnerparty.The
firstcaption

m
entions

‘nice
food’butno

food
is

show
n

in
the

firstfram
e.Interestingly,the

m
odelhas

these
tokens

attend
to

the
finalfram

e,w
here

food
is

show
n.

29

[61] and UCF-101 [103]. These tasks are 51 and 101 class classification tasks, respectively: they
challenge algorithms to predict which human activity is present in a video clip. Following prior work,
for both datasets, we average over the three standard train/test splits. We evaluate in the linear probe
setup, where models represent video clips as a single fixed vector, and a linear maximum entropy
classifier is trained on top, freezing the rest of the model’s parameters.

In addition to a random prediction baseline, we compare against [21]’s RSPNet reported results (they
use a 3DResNet-18 backbone pretrained on Kinetics400), and CLIP ViT-B/16 [89]. For MERLOT

and CLIP, we extract a single central frame from each video, and extract a feature vector from it. For
MERLOT, we represent the frame as the concatenation of the two [CLS] tokens (one was for the
image-transcript alignment task, the other was for passing to the joint encoder).

The results, shown in Table 6, show that CLIP performs best in this setup – though MERLOT does
outperform an RSPNet baseline. At first, this might appear surprising, as MERLOT was trained on
web videos, which might be closer to activity recognition datasets (as opposed to image captions).
However, common benchmarks for activity recognition tend to have strong object and background
bias – for example, to recognize the UCF action ‘playing guitar,’ it is sufficient to detect a guitar in
an image (as guitars are unlikely to show up for the other activities like ‘playing basketball’) [70].
Temporal self-supervised learning from transcripts may not lead to as powerful zero-shot object
detectors because speakers in videos may be less likely to state the obvious [41, 39], e.g., in this case,
a speaker is probably unlikely to say ‘I will now play a guitar while sitting in a chair.’

E Experimental setup and hyperparameters

E.1 Hyperparameters used during pretraining

We used AdamW [73] with a learning rate of 3e � 4, weight decay with value 0.1, and set �2=0.98.
We used minimal data augmentation on the image frames. We randomly scale them between 1.125
and 1.5 times what would fit in our 192 ⇥ 352 resolution, and take a random crop. We use a random
resize algorithm when doing this scaling, to make the model robust to different ways of preprocessing
images [94]. Last, for 80% of images, we randomly jittered either their brightness or contrast to
between 0.7 and 1.3 their original values, which we suspect did not play a major role in performance.

On the text side, we note that we have both the original copies of each transcript – what was retrieved
from YouTube – and versions “cleaned up” by our denoisifier. We can use both kinds of transcript
as additional data augmentation. However, although the words are time aligned, there might be
inconsistencies if alternating between cleaned and noisy versions inside of a single video. Thus, for
each iteration, we randomly choose either the ‘clean’ or ‘noisy’ ASR transcript and use that one.

To slightly speed up convergence, we initialize the joint vision-and-language model, and the word
embeddings, with parameters from RoBERTa [72]. However, we suspect that due to the scale of our
dataset and pretraining time, this might not have been required.

E.1.1 Unsupervised Story Ordering

[20]

For the unsupervised scrambling of visual stories task, we did not do any finetuning on the SIND
dataset [33, 50, 2]. However, there is a slight mismatch between the model that we pretrained initially,
and the format of the task – the visual stories in the SIND dataset have 5 images and captions each,
whereas we initially pretrained with at most 4 segments. We handled this discrepancy by pretraining
MERLOT for 10 more epochs, using a peak learning rate of 2e-5, and a new resolution of 384 x 384.
This slightly bigger size was to account for the (not necessarily) widescreen images in SortStory, as
opposed to the (mostly) widescreen videos on YouTube.

Recall that MERLOT’s pairwise loss is defined over pairs of segments. However, how to best
combine these into a unified score for story ordering is an open question. To briefly explore this,
during this additional pretraining of MERLOT, we applied three variants of our temporal loss: one
over caption-caption pairs, one over caption-frame pairs, and one over frame-frame pairs. We also
experimented with randomly shuffling the captions as well, in the same way as the frames, we
found however that this did not boost downstream task performance (perhaps because using shuffled
captions as input incentivizes models to learn exclusively language-language interactions). The loss

30

is computed the exact same way everywhere; the only differences is that for caption-frame pairs, we
have four options:

1. the caption (at ti) and frame (at tj) are of the same segment, so ti = tj ,
2. the caption precedes the frame, so ti < tj ,
3. the caption comes after the frame, so ti > tj ,
4. the caption comes from a different video as the frame, so comparing ti and tj is undefined.

The model learns to distinguish between those four options with a cross-entropy loss. We found that
using this version of the temporal loss over vision-language pairs produced slightly better results
on story ordering (as judged on the validation set) compared with the loss applied over the frames.
We hypothesize that this might be due to the additional ‘ti = tj’ option allowing models to assign a
probability to a frame-caption match, but are not sure. With this approach, to produce a unified score
for (length-N) permutations �L over the captions, and �V over frames, we then sum over pairwise
log-probabilities:

score(�) =
NX

i=1

NX

j=1

log

8
<

:

p(�L(i) > �V (j)) if �L(i) > �V (j)
p(�L(i) = �V (j)) if �L(i) = �V (j)
p(�L(i) < �V (j)) if �L(i) < �V (j)

.

For story ordering, the order of the captions is always fixed: �L = (1, 2, 3, 4, 5) and N = 5; we
thus feed MERLOT captions with the correct order. However, the model should have no information
about the order of the frames.9 Recall that we handle this through position embeddings (3.3); e.g.
one possible ordering might be

[image_unk_3], [image_unk_2], [image_unk_4], [image_unk_1], [image_unk_5],

and those position embeddings would get added to each frame, respectively. This allows the network
to disambiguate between distinct frames even though no order is revealed. However, we found that
the model was sometimes sensitive to the exact order of these position embedding tokens, and so for
each example we randomly sampled two orderings and averaged the model’s pairwise probabilities.
We found no difference in performance when using more than two orderings. We hypothesize that
this could be an issue with how (absolute) position embeddings are handled by Transformers, but are
not fully confident; we leave a more thorough investigation for future work.

E.2 Per-downstream fine-tuning details.

In this section, we discuss implementation details for finetuning MERLOT on downstream tasks.
For each downstream task, given images I1:N and language context w, we first encode I1:N via the
image encoder. We concatenate this with word embeddings of w, apply position embeddings, and
feed the result into the joint vision-language encoder to extract joint representation. The input images
I1:N are either provided by the task or extracted from given video, where we uniformly select N
frames from the video clips (spaced evenly, so with an equal amount of time between sequential
frames). For supervised tasks, we use as the ‘head’ a two-layer MLP from random initialization on
top of the CLS token of the language context together with the rest of MERLOT.

For downstream tasks, we note that we found it effective to finetune on different resolutions than what
we used during pretrianing. Our default image resolution here was 384⇥ 704. To do this, we note that
all parameters in the model remain the same, except for position embeddings on the image patches.
We expanded the size of the position embedding matrix by initializing the upper-left-side 192x352
region from the pretrained model, and used random initialization for new position embeddings.

For all downstream tasks, we followed the standard training, validation, and test splits of the original
datasets. We used the AdamW [73] optimizer, with �2 = 0.98, and warmed up the learning rate
linearly for the first 10% of iterations, followed by a linear decay of the learning rate (down to 0) for
the remaining 90%. For regularization, we used L2 weight decay with a value of 0.01, and a dropout
rate of 10%. For tuning other hyperparameters, we first did a larger random hyperparameter search
over VCR, and used those hyperparameters as defaults for the other tasks. We used a batch size of

9Embarassingly, we found a slight leakage of this in the V1 of this arxiv paper which inflated the story
ordering performance by a few percentage points (of pairwise accuracy), which we have corrected in this version.

31

64, and searched over learning rates in the range [1e-5, 2e-4] on VCR, we found that 1.2e-5 worked
well, so we used it as the default for other tasks. We also trained with early stopping, validating every
epoch and returning the best-performing model across epochs. Due to our choice of early stopping,
we trained for a slightly larger-than-typical number of epochs (18 by default for every tasks, as we
found training longer did not help on VCR).

We follow the standard evaluation metrics for these tasks, which is usually accuracy for QA-style
configurations. Alongside brief descriptions of each downstream task, we provide hyperparameter
and training details in the following section.

E.3 Static Image Reasoning Tasks

E.3.1 VCR

VCR [123]contains two different subtasks: question answering (Q!A) and answer justification
(QA!R), both of which are multiple choice questions over a given image. These subtasks are
combined in the joint Q!AR metric, which requires a model to both pick the right answer and the
right rationale for the model to get a question ‘right.’ VCR has 290k questions over 110k movie
scenes.

As mentioned in the main text, VCR provides bounding boxes around entities, with explicit groundings
between those entities and references in questions. We draw colored highlights around the referenced
entity directly in the image, with consistent mapping between color code and entity name (e.g.
person1 with red box, person2 with green box, etc). Though no text is written on the image, because
we always associate each string (e.g. person1) with a deterministic color, the model can learn through
finetuning to associate that color with the entity. Figure 12 illustrates one such example.

What is [person1] thinking?

[person2] is thinking she would rather have gone to the science museum of the beach.
She wants [person8] to sit back in [chair1] and let her take care of the cleanup
She can’t believe what she is seeing
[person1] is wondering if [person2] is going to kiss her

a)
b)
c)
d)

I think so because …

[person6] is leaning backwards and has an expression of confusion.
[person1] is staring at [person2] with a questioning expression.
They are dancing and they are looking intently at each other.
[person1] is unsure what will happen next.

a)
b)
c)
d)

Q ➜ A

Q A ➜ R

Figure 12: A VCR example with highlighted image. The image with the drawn-on boxes is what we
pass to models.

We jointly finetune MERLOT on Q!A and QA!R, with two separate MLP heads. We concatenate
the question (the question and the ground truth answer) and each answer (rationale) choice from
the four possible answer (rationale) candidates. On-top of the CLS token of the question, we train
the classifier to predict the confidence for each candidate to be correct with cross-entropy loss, and
take softmax over four possible candidates for each question. We used a widescreen resolution of
384⇥704 set the batch size as 64, and train for 60k training steps, which is roughly 18 epochs. We
started with this and then tuned the learning rate (from candidates chosen randomly); here, we found
that a learning rate of 1.2e-5 worked well. We then used this learning rate as a default for the other
tasks.

Note that our pretraining setup is different from other work. Previous works [22, 36, 119] conduct
what they call ‘second-stage pretraining’ with VCR training data. Here, they use a masked language
model objective over the VCR dataset (instead of answering the question correctly). In particular,
UNITER [22] reports 2.8 % point performance boost due to the second-stage pretraining. We suspect
that this might be because the caption data (that models like UNITER rely on) are quite different
from VCR. We tried performing secondary pretraining and found it did not help. One possible reason
might be that our large-scale pretraining corpus covers diverse and complex event space thus we
don’t need additional data domain adaptation.

32

What (50K) Who (20K) How (2K) When (677) Where (250) Overall

AMU [117] 26.2 43.0 80.2 72.5 30.0 30.5
VQA-T [118] 35.5 51.1 - 81.0 43.5 41.5

MERLOT 37.0 52.9 85.3 79.2 42.8 43.0

Table 7: Per question-category results for MSRVTT-QA.

E.4 Video Reasoning Tasks

MSRVTT-QA [117]

MSRVTT-QA is a question-answering task with 244K questions posed over 10K videos. For each
video clip, we uniformly selected 5 image frames (spaced evenly through the video). We follow
the protocols of the original work and use an answer vocabulary containing the most common 1K
answers in the training set as answer candidates. The questions with out-of-vocabulary answer will
automatically get wrong. We encode the answers in a one-hot fashion, and train 2-layer MLP classifier
over all answer candidates with a binary cross-entropy loss on-top of the CLS token of the question.
We train for 60k training steps with batch size 16. A few additional fine-tuning runs were conducted
to examine the effect of changing the resolution from 384⇥704 to 704⇥704, a batch size of 16 vs.
32, and and using 1.5K answers instead of 1K, but none had much impact on validation accuracy.
We undertook a light hyperparameter optimization over the validation set, wherein we considered
3 possible learning rates (1.2e-5, 6e-5, 2.4e-6), but the default worked best. MSRVTT-QA splits
questions by type, and we report our per-type test set results in comparison to [117, 118] in Table 7.

TVQA [64]

TVQA is a multiple choice task with 152K questions posed over 21K video clips. For each clip,
we uniformly select 6 image frames. We concatenate the question and each answer choice from
the five possible answer candidates. On-top of the CLS token of the question, we train 2-layer MLP
classifier to predict the confidence for each candidate to be correct with cross-entropy loss, and take
softmax over five possible candidates for each question. We set the batch size as 64, and train for 35k
training steps (roughly 18 epochs over the corpus). We used the default learning rate of 1.2e-5, and a
resolution of 384⇥704.

TVQA+ [65]

TVQA+ is a subset of TVQA, where bounding boxes are provided in video clips, linking depicted
objects to visual concepts in questions and answers. TVQA+ contains 29.4K questions posed over
4.2K video clips. We uniformly select 6 image frames per video, and draw bounding boxes on each
frame following the same manner with VCR. We train the classifier in the same way with TVQA. We
trained with the same hyperparameters as TVQA, but for 16k steps (18 epochs still).

VLEP [66] VLEP is a binary choice task to infer which of the two events is more likely to happen
next following the given video. VLEP contains 28.7K questions posed over 10K video clips. For each
clip, we uniformly select 6 image frames. On-top of the CLS token of the event, we train 2-layer MLP
classifier to predict the confidence for each event to happen next with cross-entropy loss, and take
softmax over two possible events for each instance. We trained the model for 8k steps (18 epochs
over the dataset), and with otherwise default hyperparameters.

DramaQA [23]

DramaQA is a multiple choice task with 17.9K questions posed over 23.9K video clips. For each
clip, we uniformly select 6 image frames. We concatenate the question and each answer choice from
the five possible answer candidates. On-top of the CLS token of the question, we train 2-layer MLP
classifier to predict the confidence for each candidate to be correct with cross-entropy loss, and take
softmax over five possible candidates for each question. We trained for 3.5k steps (18 epochs) with
otherwise default hyperparameters. A few additional fine-tuning runs were conducted to examine the
effect of changing the resolution between 384⇥704, 512⇥512 and 704⇥704, and we found 512⇥512
works the best for this task.

33

Common hyperparameters

Learning rate 1.2e-5
Weight Decay 0.01
�2 0.98
Warmup ratio 10%

Resolution Batch Size Max Epochs Training Steps

VCR 384x704 64 18 60k
MSRVTT-QA 384x704 16 18 35k
TVQA 384x704 64 18 35k
TVQA+ 384x704 64 18 35k
VLEP 384x704 64 18 18k
DramaQA 512x512 64 18 18k
TGIF-Action 384x704 16 56 70k
TGIF-Trans 384x704 16 22 70k
TGIF-FrameQA 384x704 16 56 70k
ActivityNetQA 384x704 16 10 34k
LSMDC-FIB 384x704 16 8 150k
LSMDC-MC 384x704 16 12 80k
MSRVTT-MC 384x704 16 12 80k

Table 8: Hyperparameters for finetuning on all downstream tasks. Common hyperparameters are
shown to the left, and task-specific hyperparameters are to the right.

Motion Spatial Temporal Yes-No Color Object Location Number Other All

VQA-T [118] 28.0 17.5 4.9 66.3 34.3 26.7 35.8 50.2 36.8 38.9
MERLOT 33.9 18.1 4.0 72.5 36.2 24.5 36.5 51.7 37.8 41.4

Table 9: Per question-category results for ActivityNetQA

TGIF-QA [52]

TGIF-QA is web GIF VQA, which requires spatio-temporal reasoning from visual frames to answer
questions correctly. We finetuned MERLOT on three tasks in TGIF-QA benchmark,

Action is defined as a multiple choice question about identifying an action that has been repeated in a
video.

Transition is asking about transitions of certain states. The benchmark provides a multiple choice
question about identifying the state before or after another state.

FrameQA is asking open-ended questions about the given video. The model selects answer from a
dictionary of words, given a question in a complete sentence.

For each video clip, we uniformly select 5 image frames. We serialized 5 candidate answers and
a question, where we put a special token QSEP between the candidate answers and question to
concatenate them into one question. On-top of the CLS token of the question, we trained 2-layer MLP
to predict the confidence of the five candidates with cross-entropy loss. We set the batch size as 16,
and train for 70k training steps (Action : 56 epoch, Transition : 22 epoch, FrameQA : 28 epoch) for
each task with 1.2e-5 learning rate. We used a longer training duration for each task as we found
that performance increased when we did so (and we used the same number of training steps for each
TGIF-QA task). All other hyperparameters were default.

ActivityNetQA [45, 122]

ActivityNetQA [122] is a question-answering with 58K questions posed over 5.8K videos. For each
video clip, we uniformly select 5 image frames. We use an answer vocabulary containing the most
common 1K answers in the training set as answer candidates. The questions with out-of-vocabulary
answer will automatically get wrong. We encode the answers in a one-hot fashion, and train 2-layer
MLP classifier over all answer candidates with a binary cross-entropy loss on-top of the CLS token of
the question. We set the batch size as 16, and train for 34K training steps for each task. We undertook
a light hyperparameter optimization over the validation set, wherein we considered 3 possible learning
rates (1.2e-5, 6e-5, 2.4e-6), but the default worked best. A few additional fine-tuning runs were
conducted to examine the effect of changing the resolution from 384⇥704 to 704⇥704, a batch size
of 16 vs. 32, and using 1.5K answers instead of 1K, but none had much impact on validation accuracy.
ActivityNetQA splits questions by type, and we report our per-type test set results in comparison to
[118] in Table 9.

LSMDC FiTB QA [76, 92]

34

The Fill-in-the-blank (FiTB) task is, given a video clip and a sentence with a blank in it, to predict
a single correct word for the blank. The test set includes 30,000 examples from 10,000 clips
(i.e. 3 blanks for each description). For each clip, we uniformly select 5 image frames. We
constructed answer vocabulary containing the most common word for blank in the training set as
answer candidates. We replace the blank in the sentence with BLANK token, so the question query
should be a blanked sentence with the special token. On-top of the CLS token of the blanked sentence
query, we trained 2-layer MLP classifier to predict the word for the blank over answer vocabulary.
We set the batch size as 16, and train for 150k training steps (8 epoch) with 1.2e-5 learning rate.

LSMDC Multichoice [110]

Given a video query and 5 candidate captions, the task is to find the one that fits the query out of 5
possible candidates. The correct answer is the ground-truth (GT) caption, and four other negatives
are chosen from other captions that have different activity-phrase labels from the correct answer. We
randomly created 100,000 video and candidates pairs for training. For each video clip, we uniformly
select 5 image frames. We put a special token QSEP between the candidate captions to concatenate 5
candidates into one question. At the end of the 5 captions, we put CLS token as an end of the question.
On-top of the CLS token, we trained 2-layer MLP to predict the confidence of the five candidates with
cross-entropy loss. We set the batch size as 16, and train for 80k training steps (12 epoch) with 1.2e-5
learning rate.

MSRVTT Multichoice [121]

The task objective for the MSRVTT Multichoice benchmark is identical to those of corresponding
tasks in the LSMDC benchmark [110]. The benchmark has 2,990 questions in total for the multiple
choice test, using all the test video clips of MSR-VTT. For each test video. We finetuned our model
on MSR-VTT train split, and evaluated on the evaluation set. We trained the same model specification
as the LSMDC Multichoice task. For training, we set the batch size as 16, and train for 80k training
steps (12 epoch) with 1.2e-5 learning rate.

F Datasheet for YT-Temporal-180M

In this section, we present a DataSheet [37, 12] for YT-Temporal-180M, synthesizing many of the
other analyses we performed in this paper.

1. Motivation For Datasheet Creation
• Why was the dataset created? In order to investigate learning events from videos –

involving a collection of frames and captions over time, that together form a view about
the world.

• Has the dataset been used already? No.
• What (other) tasks could the dataset be used for? Possibly other types of represen-

tation learning, with or without ASR captions.
• Who funded dataset creation? This work was funded by DARPA MCS program

through NIWC Pacific (N66001-19-2-4031), and the Allen Institute for AI.
2. Data composition

• What are the instances? The instances that we consider in this work are videos,
paired with ASR transcripts aligned over time.

• How many instances are there? We include 6 million videos. The total length of
all the ASR transcripts is 5 billion BPE tokens. Altogether, we extracted 180 million
image frames from this data.

• What data does each instance consist of? The instances have ‘raw’ video frames and
text, which we preprocess through BPE tokenization and extracting frames for every
32 BPE tokens.

• Is there a label or target associated with each instance? We only use the ASR
captions as labels in this work, though it might be also possible to use auxiliary
information (like tags or video titles).

• Is any information missing from individual instances? No.

35

• Are relationships between individual instances made explicit? Not applicable – we
do not study relations between different videos (e.g. made by the same creator), though
this is a possibility for future work

• Does the dataset contain all possible instances or is it a sample? Just a sample.
• Are there recommended data splits (e.g., training, development/validation, test-

ing)? We do not provide recommended data splits at this time, as this data was built
only for pretraining rather than evaluation. We suspect that the data is large enough
that overfitting is not a major concern.

• Are there any errors, sources of noise, or redundancies in the dataset? If so,
please provide a description. Yes. YouTube ASR is often noisy, and though we
presented a pipeline to correct some of these errors, there are many that we cannot fix.

• Is the dataset self-contained, or does it link to or otherwise rely on external re-
sources (e.g., websites, tweets, other datasets)? The dataset is self-contained. How-
ever, we plan to only release the video URLs, rather than the videos themselves, so as
to protect user privacy (allowing users to delete videos).

3. Collection Process
• What mechanisms or procedures were used to collect the data? We used the

YouTube API and the youtube-dl library.
• How was the data associated with each instance acquired? Was the data directly

observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data? The data was directly
observable (from YouTube).

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? We used a prob-
abilistic strategy with many heuristics, more details in Appendix A.

• Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdwork-
ers paid)? Data collection was primarily done by the first authors of this paper.

• Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl
of old news articles)? If not, please describe the timeframe in which the data
associated with the instances was created. The data was collected from November
2020 to April 2021, even though the YouTube videos are often much older (dating back
to when the platform was first created).

4. Data Preprocessing
• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization

or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? Yes, we discuss this in Ap-
pendix A: of note, we use a sequence-to-sequence model to ‘denoise’ ASR transcripts
(Appendix A.3), BPE-tokenize text, turn everything into segments, and extract the
middle image frame for each video segment.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other
access point to the ‘raw’ data. The raw data was saved, but at this time we do not
plan to release it directly due to copyright and privacy concerns.

• Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point. We will make our code public to support future
research.

• Does this dataset collection/processing procedure achieve the motivation for cre-
ating the dataset stated in the first section of this datasheet? If not, what are the
limitations? We believe our dataset does allow for study of our goal – indeed, it
covers grounded temporal situations from a variety of domains – but with significant
limitations. Some of the key ones we are aware of involve various biases on YouTube,
which we discuss in Section 5.

5. Dataset Distribution

36

• How will the dataset be distributed? At this time, we plan to distribute all the
metadata (transcripts, etc) that we used, as well as links to the YouTube videos that we
used. We will do this on our website.

• When will the dataset be released/first distributed? What license (if any) is it
distributed under? We will release it as soon as possible, using a permissible license
for research-based use.

• Are there any copyrights on the data? We believe our use is ‘fair use,’ however, due
to an abundance of caution, we will not be releasing any of the videos themselves.

• Are there any fees or access restrictions? No.
6. Dataset Maintenance

• Who is supporting/hosting/maintaining the dataset? The first authors of this work.
• Will the dataset be updated? If so, how often and by whom? We do not plan to

update it at this time.
• Is there a repository to link to any/all papers/systems that use this dataset? Not

right now, but we encourage anyone who uses the dataset to cite our paper so it can be
easily found.

• If others want to extend/augment/build on this dataset, is there a mechanism for
them to do so? Not at this time.

7. Legal and Ethical Considerations
• Were any ethical review processes conducted (e.g., by an institutional review

board)? No official processes were done, as our research is not on human subjects, but
we had significant internal deliberation when choosing the scraping strategy.

• Does the dataset contain data that might be considered confidential? No, we only
use public videos.

• Does the dataset contain data that, if viewed directly, might be offensive, insult-
ing, threatening, or might otherwise cause anxiety? If so, please describe why Yes
– many of these videos exist on YouTube; we discuss this more in Section 5.

• Does the dataset relate to people? Yes.
• Does the dataset identify any subpopulations (e.g., by age, gender)? Not explicitly

(e.g. through labels)
• Is it possible to identify individuals (i.e., one or more natural persons), either

directly or indirectly (i.e., in combination with other data) from the dataset? Yes,
our data includes celebrities, or other YouTube-famous people. All of the videos that
we use are of publicly available data, following the Terms of Service that users agreed
to when uploading to YouTube.

37

MERLOT Reserve:
Neural Script Knowledge through Vision and Language and Sound

Rowan Zellers Jiasen Lu Ximing Lu Youngjae Yu Yanpeng Zhao
Mohammadreza Salehi Aditya Kusupati Jack Hessel Ali Farhadi Yejin Choi

Paul G. Allen School of Computer Science & Engineering, University of Washington
Allen Institute for Artificial Intelligence University of Edinburgh

rowanzellers.com/merlotreserve

…
Add a third of a
cup of popcorn

Now turn the
heat on high

Add a lid, and
then

*sizzling**pouring sound* *lid clinking*

jiggle it
while it pops

*jiggling, popcorn
popping*

w4

[MASKed span]

w1 w2 w3

a1 a2 a3

a4

v1 v2 v3 v4

Figure 1: MERLOT Reserve learns multimodal neural script knowledge representations of video – jointly reasoning over
video frames, text, and audio. Our model is pretrained to predict which snippet of text (and audio) might be hidden by the MASK.
This task enables it to perform well on a variety of vision-and-language tasks, in both zero-shot and finetuned settings.

Abstract

As humans, we navigate a multimodal world, building
a holistic understanding from all our senses. We intro-
duce MERLOT Reserve, a model that represents videos
jointly over time – through a new training objective that learns
from audio, subtitles, and video frames. Given a video, we
replace snippets of text and audio with a MASK token; the
model learns by choosing the correct masked-out snippet.
Our objective learns faster than alternatives, and performs
well at scale: we pretrain on 20 million YouTube videos.

Empirical results show that MERLOT Reserve

learns strong multimodal representations. When finetuned,
it sets state-of-the-art on Visual Commonsense Reasoning
(VCR), TVQA, and Kinetics-600; outperforming prior work
by 5%, 7%, and 1.5% respectively. Ablations show that
these tasks benefit from audio pretraining – even VCR, a QA
task centered around images (without sound). Moreover, our
objective enables out-of-the-box prediction, revealing strong
multimodal commonsense understanding. In a fully zero-shot
setting, our model obtains competitive results on four video
tasks, even outperforming supervised approaches on the
recently proposed Situated Reasoning (STAR) benchmark.

We analyze why audio enables better vision-language rep-
resentations, suggesting significant opportunities for future
research. We conclude by discussing ethical and societal
implications of multimodal pretraining.

1. Introduction
The world around us is dynamic. We experience and

learn from it using all of our senses, reasoning over them
temporally through multimodal script knowledge [99, 128].
Consider Figure 1, which depicts someone cooking popcorn.
From the images and dialogue alone, we might be able to
imagine what sounds of the scene are: the process might
begin with raw kernels scattering in an empty, metallic pot,
and end with the dynamic ‘pops’ of popcorn expanding,
along with the jiggling of a metal around the stove.

Predicting this sound is an instance of learning from reen-
try: where time-locked correlations enable one modality to
educate others. Reentry has been hypothesized by develop-
mental psychologists to be crucial for how we as humans
learn visual and world knowledge, much of it without need
for an explicit teacher [89, 35, 20, 100]. Yet, we ask – can
we build machines that likewise learn vision, language, and
sound together? And can this paradigm enable learning neu-
ral script knowledge, that transfers to language-and-vision
tasks, even those without sound?

In this work, we study these questions, and find that the
answers are ‘yes.’ We introduce a new model that learns
self-supervised representations of videos, through all their
modalities (audio, subtitles, vision). We dub our model

MERLOT Reserve1, henceforth Reserve for short.

1Short for Multimodal Event Representation Learning Over Time, with
Re-entrant Supervision of Events.

1

ar
X

iv
:2

20
1.

02
63

9v
4

 [c
s.C

V
]

13
 M

ay
 2

02
2

https://rowanzellers.com/merlotreserve

Our model di�ers from past work that learns from audio-
image pairs [54, 71], from subtitled videos [105, 128], or
from static images with literal descriptions [106, 21, 92].
Instead, we learn joint representations from all modalities of
a video, using each modality to teach others. We do this at
scale, training on over 20 million YouTube videos.

We introduce a new contrastive masked span learning
objective to learn script knowledge across modalities. It
generalizes and outperforms a variety of previously proposed
approaches (e.g. [29, 106, 92, 128]), while enabling audio to
be used as signal. The idea is outlined in Figure 1: the model
must figure out which span of text (or audio) was MASKed
out of a video sequence. We combine our objective with a
second contrastive learning approach, tailored to learning
visual recognition from scratch: the model must also match
each video frame to a contextualized representation of the
video’s transcript [128]. Through ablations, we show that our
framework enables rapid pretraining of a model and readily
scales to ‘large’ transformer sizes (of 644M parameters).

Experimental results show that Reserve learns power-
ful representations, useful even for tasks posed over only a few
of the studied modalities. For example, when finetuned on
Visual Commonsense Reasoning [126] (a vision+language
task with no audio), it sets a new state-of-the-art, outperform-
ing models trained on supervised image-caption pairs by over
5%. It does even better on video tasks: fine-tuning without
audio, it outperforms prior work on TVQA [75] by a margin
of over 7% (and given TVQA audio, performance increases
even further). Finally, audio enables 91.1% accuracy on
Kinetics-600 [19]. These performance improvements do not
come at the expense of e�ciency: our largest model uses
one-fifths the FLOPs of a VisualBERT.

Reserve also performs well in zero-shot settings. We
evaluate on four diverse benchmarks: Situated Reasoning
(STAR) [119], EPIC-Kitchens [26], LSMDC-FiB [96], and
MSR-VTT QA [120]. These benchmarks require visual
reasoning with respective emphasis on temporality, future
prediction, and both social and physical understanding. With
no fine-tuning or supervision, our model obtains competitive
performance on each. Of note, it nearly doubles [123]’s SoTA
zero-shot accuracy on MSR-VTT QA, and it outperforms
supervised approaches (like ClipBERT [74]) on STAR.

Finally, we investigate why, and on which training in-
stances audio-powered multimodal pretraining particularly
helps. For instance, predicting audio rewards models for
recognizing dynamic state changes (like cooked popcorn)
and human communication dynamics (what are people’s emo-
tions and towards whom). Our model progressively learns
these phenomena as pretraining progresses. These signals
are often orthogonal to what snippets of text provide, which
motivates learning from both modalities.

In summary, our key contributions are the following:

a. Reserve, a model for multimodal script knowledge,

fusing vision, audio, and text.
b. A new contrastive span matching objective, enabling our

model to learn from text and audio self-supervision.
c. Experiments, ablations, and analysis, that demonstrate

strong multimodal video representations.

Overall, the results suggest that learning representations from
all modalities – in a time-locked, reentrant manner – is a
promising direction, and one that has significant space for
future work. We release code and model checkpoints at
rowanzellers.com/merlotreserve.

2. Related Work
Our work brings together two active lines of research.

Joint representations of multiple modalities. Many
language-and-vision tasks benefit from early fusion of the
modalities [6]. A family of ‘VisualBERT’ models have been
proposed for this: typically, these use a supervised object de-
tector image encoder backbone, and pretrain on images paired
with literal captions [106, 77, 81, 21, 124, 74]. Cross-modal
interactions are learned in part through a masked language
modeling (mask LM) objective [29], where subwords are
replaced with ‘MASK’, and models independently predict each
subword conditioned on both images and unmasked tokens.2

Perhaps closest to our work is MERLOT [128], which
learns a joint vision-text model from web videos with au-
tomatic speech recognition (ASR). Through a combination
of objectives (including a variant of mask LM), MERLOT
established strong results on a variety of video QA bench-
marks when finetuned. However, it lacks audio: it is limited
to representing (and learning from) video frames paired with
subtitles. Our proposed Reserve, which represents and
learns from audio, outperforms MERLOT.

Co-supervision between modalities. A common pitfall
when training a joint multimodal model is that complex
inter-modal interactions can be ignored during learning, in
favor of simpler intra-modal interactions [51, 24, 59]. For
example, when using the aforementioned mask LM objective,
models can ignore visual input completely in favor of text-text
interactions [13]; this issue is magnified when training on
videos with noisy ASR text [128].

A line of recent work thus learns independent modality-
specific encoders, using objectives that cannot be shortcutted
with simple intra-modal patterns. Models like CLIP learn
image classification by matching images with their captions,
contrastively [132, 92, 63]. Recent work has explored this
paradigm for matching video frames with their transcripts
[121], with their audio signal [97, 114], or both [3, 2]; these

2Recent papers propose extensions, like generating masked-out spans
[22] or text [78, 116], but it is unclear whether they can outperform the
VisualBerts on vision-language tasks like VCR [126]. Another extension
involves learning from text-to-speech audio in a captioning setting [62, 79] –
yet this lacks key supervision for environmental sounds and emotive speech.

2

https://rowanzellers.com/merlotreserve

works likewise perform well on single-modality tasks like
audio classification and activity recognition. These indepen-
dent encoders can be combined through late fusion [97], yet
late fusion is strictly less expressive than our proposed joint
encoding (early fusion) approach.

Our work combines both lines of research. We learn
a model for jointly representing videos, through all their
modalities, and train it using a new learning objective that
enables co-supervision between modalities.

3. Model: Reserve

In this section, we present Reserve, including: our
model architecture (3.1), new pretraining objectives (3.2),
and pretraining video dataset (3.3). At a high level,

Reserve represents a video by fusing its constituent
modalities (vision, audio, and text from transcribed speech)
together, and over time. These representations enable both
finetuned and zero-shot downstream applications.

More formally, we split a video V into a sequence of
non-overlapping segments in time {st}. Each segment has:

a. A frame vt, from the middle of the segment,
b. The ASR tokens wt spoken during the segment,
c. The audio at of the segment.

Segments default to 5 seconds in length; we discuss details
of how we split videos into segments in Appendix C.

As the text wt was automatically transcribed by a model
given audio at, it is reasonable to assume that it contains
strictly less information content.3 Thus, for each segment
st, we provide models with exactly one of text or audio. We
will further mask out portions of the text and audio during
pretraining, to challenge models to recover what is missing.

3.1. Model architecture

An overview of Reserve is shown in Figure 2. We
first pre-encode each modality independently (using a Trans-
former [110] or images/audio; a BPE embedding table for
text). We then learn a joint encoder to fuse all representations,
together and over time.

Image encoder. We use a Vision Transformer (ViT; [34])
to encode each frame independently. We use a patch size
of 16 and apply a 2x2 query-key-value attention pool after
the Transformer, converting an image of size H⇥W into a
H/32⇥W/32 feature map of dimension dh.

Audio encoder. We split the audio in each segment at

into three equal-sized subsegments, for compatibility with
the lengths at which we mask text (Appendix C). We use an

3Despite being derived from the audio, pretraining with text is still
paramount: 1) in §3.2 we discuss how jointly modeling audio+text prevents
models from shortcutting pretraining objectives via surface correlations;
2) in §4.2 we show that incorporating both transcripts and audio during
fine-tuning improves performance; and 3) a textual interface to the model is
required for downstream vision+language with textual inputs.

inputs for segment t

Image Encoder
(ViT)

1,1 1,2
H/32,

W/32
…

 MASK
while it pops

Word Embed
(BPE)

*jiggling,
popcorn
popping*

at

Audio Encoder
(AST)

MASK
Text

MASK
Audio … or

wt

atwt

vt

321while …

Joint Encoder (Transformer)
for all modalities and timesteps

vt at

Predict MASKed
text and audio ^ ^

Figure 2: Reserve architecture. We provide sequence-
level representations of video frames, and either words or
audio, to a joint encoder. The joint encoder contextualizes
over modalities and segments, to predict what is behind
MASK for audio bat and text cwt. We supervise these predictions
with independently encoded targets: at from the audio
encoder, and wt from a separate text encoder (not shown).

Audio Spectrogram Transformer to encode each subsegment
independently [47]. The three feature maps are concatenated;
the result is of size 18⇥dh for every 5 seconds of audio.

Joint encoder. Finally, we jointly encode all modalities
(over all input video segments) using a bidirectional Trans-
former. We use a linear projection of the final layer’s hidden
states for all objectives (e.g. bwt and bat).

Independently-encoded targets. We will supervise the
joint encoder by simultaneously learning independently-
encoded ‘target’ representations for each modality. Doing
this is straightforward for the image and audio encoders: we
add a CLS to their respective inputs, and extract the final
hidden state vt or at at that position. For text, we learn
a separate bidirectional Transformer span encoder, which
computes targets wt from a CLS and embedded tokens of a
candidate text span. This enables zero-shot prediction (4.4).

Architecture sizes. We consider two model sizes in this
work, which we pretrain from random initialization:

1. Reserve-B, with a hidden size of 768, a 12-layer
ViT-B/16 image encoder, and a 12-layer joint encoder.

2. Reserve-L, with a hidden size of 1024, a 24-layer
ViT-L/16 image encoder, and a 24-layer joint encoder.

We always use a 12-layer audio encoder, and a 4-layer text
span encoder. Details are in Appendix B.

3.2. Contrastive Span Training

We introduce contrastive span training, which enables
learning across and between the three modalities. As shown
in Figure 3, the model is given a sequence of video segments.

3

it popswhilejiggle itadd a nowof a
 cup of

lid and
 then

popcornAdd a
 third MASK

sizzling

jiggling

music

……

…… ……

at’’at’at̂ ^ ^wt’’wt’wt̂^ ^

at’’

at’

atwt

wt’’

wt’

Joint Encoder

turn the heat on high

jiggle it

welcome to my channel

Figure 3: Contrastive span training. Given a video with all
modalities temporally aligned, we MASK out a region of text
and audio. The model must maximize its similarity only to
an independent encoding of the text wt and audio at.

For each one, we include the video frame, and then three ‘sub-
segments’ that are each either text or audio. The subdivided
audio segments are encoded independently by the Audio
Encoder, before being fused by the Joint Encoder. We train
by replacing 25% of these text and audio subsegments with a
special MASK token. The model must match the representation
atop the MASK only with an independent encoding of its span.

Our approach combines past success at matching images
to their captions [92, 63] along with ‘VisualBERT’-style
prediction of independent tokens [106, 21] – though, crucially,
we predict representations at a higher-level semantic unit
than individual tokens. Our approach also enables the
model to learn from both audio and text, while discouraging
memorization of raw perceptual input, or tokens – which can
harm representation quality [112].

Formally, we minimize the cross entropy between the
MASKed prediction ŵt and its corresponding phrase represen-
tation wt, versus others in the batch W:

Lmask!text=
1

|W|
X

wt2W

✓
log

exp(�ŵt ·wt)P
w2W exp(�ŵt ·w)

◆
. (1)

We first L2-normalize w and ŵ, and scale their dot product
with a parameter � [92].4 We then add this to its trans-
posed version Ltext!mask, giving us our text-based loss Ltext.
Analogously, we define Laudio for audio, between the MASKed
prediction ât and its target at, versus others a in the batch.

In addition to these masked text and audio objectives,
we simultaneously train the model to match video frames
with a contextualized encoding of the transcript.5 Here, the
joint encoder encodes the entire video’s transcript at once,
extracting a single hidden representation per segment v̂t. We
use the same contrastive setup as Equation 1 to maximize the

4Following past work, we optimize � and clip it at 100, which enables
the model to ‘warm-up’ its emphasis placed on hard negatives [92, 113].

5In MERLOT [128], this objective was found to be critical for learning
visual recognition from self-supervised videos.

similarity of these vectors with the corresponding vt vectors
from the frames, giving us a symmetric frame-based loss
Lframe. The final loss is the sum of the component losses:

L = Ltext + Laudio + Lframe. (2)

Avoiding shortcut learning. Early on, we observed that
training a model to predict a perceptual modality (like audio
or vision) given input from the same modality, led to shortcut
learning – a low training loss, but poor representations. We
hypothesize that this setup encourages models to learn imper-
ceptible features, like the exact model of the microphone, or
the chromatic aberration of the camera lens [33]. We avoid
this, while still using audio as a target, by simultaneously
training on two kinds of masked videos:

i. Audio only as target. We provide only video frames and
subtitles. The model produces representations of both
audio and text that fill in MASKed blanks.

ii. Audio as input. We provide the model video frames, and
subtitles or audio at each segment. Because the model
is given audio as an input somewhere, the model only
produces representations for MASKed text.

Another issue is that YouTube’s captions are not perfectly
time-aligned with the underlying audio. During our initial
exploration, models took ready advantage of this shortcut:
for instance, predicting an audio span based on what adjacent
(overlapping) words sound like. We introduce a masking
algorithm to resolve this; details in Appendix C.

Pretraining setup. We train on TPU v3-512 accelerators;
training takes 5 days for Reserve-B, and 16 days for

Reserve-L. We made pretraining more e�cient through
several algorithmic and implementation improvements. Of
note, we simultaneously train on written (web) text, which
enables more text candidates to be used. We use a batch size
of 1024 videos, each with N=16 segments (split into two
groups of 8 segments each). We use AdamW [69, 80] to
minimize Equation 2. More details and hyperparameters are
in Appendix B.

3.3. Pretraining Dataset

Recent prior work on static images that demonstrates
empirical improvements by increasing dataset size – all the
way up to JFT-3B [70, 34, 92, 130]. The same pattern
emerges in videos: prior work that has shown promising
empirical improvements not only by scaling to 6 million
videos/180M frames [128], but also by collecting a diverse
set (i.e., going beyond instructional videos [60]).

To this end, we introduce a new training dataset of 20 mil-
lion English-subtitled YouTube videos, and 1 billion frames,
called YT-Temporal-1B. At the same time, we take steps
to protect user privacy, directing scraping towards public,
large, and monetized channels. We detail our collection,
preprocessing, and release strategy in Appendix E.

4

4. Experiments
In this section, we present model ablations (4.1.1), and

show that a finetuned Reserve obtains state-of-the-art
results on VCR (4.1.2), TVQA (4.2), and Kinetics-600 (4.3).
We then show that our model has strong zero-shot capability,
over four challenging zero-shot tasks (4.2).

4.1. Visual Commonsense Reasoning (VCR)

We evaluate Reserve first through finetuning on VCR
[126]. Most competitive models for VCR are pretrained exclu-
sively on images paired with captions, often with supervised
visual representations (e.g. from an object detector). To
the best of our knowledge, the only exception is MERLOT
[128], which uses YouTube video frames and text as part of
pretraining; no VCR model to date was pretrained on audio.

VCR Task. A model is given an image from a movie,
and a question. The model must choose the correct answer
given four multiple choice options (Q!A); it then is given
four rationales justifying the answer, and it must choose
the correct one (QA!R). The results are combined with a
Q!AR metric, where a model must choose the right answer
and then the right rationale, to get the question ‘correct.’

Finetuning approach. We follow [128]’s approach:
‘drawing on’ VCR’s detection tags onto the image, and
jointly finetuning on Q!A and QA!R. For both subprob-
lems, we learn by scoring each Q!A (or QA!R) option
independently. We pool a hidden representation from a
MASK inserted after the text, and pass this through a newly-
initialized linear layer to extract a logit, which we optimize
through cross-entropy (details in Appendix D.1.1.)

4.1.1 Ablations: contrastive learning with audio helps.

While we present our final, state-of-the-art VCR performance
in 4.1.2, we first use the corpus for an ablation study. We use
the same architecture and data throughout, allowing apples-
to-apples comparison between modeling decisions. We start
with a similar configuration to MERLOT [128] and show
that contrastive span training improves further, particularly
when we add audio.

Contrastive Span helps for Vision+Text modeling. We
start by comparing pretraining objectives for learning from
YouTube ASR and video alone:

a. Mask LM. This objective trains a bidirectional model
by having it independently predict masked-out tokens.
We make this baseline as strong as possible by using
SpanBERT-style masking [64], where text spans are
masked out (identical to our contrastive spans). Each
span w is replaced by a MASK token, and we predict each
of its subwords wi independently.6

6Like [64], we concatenate the MASK’s hidden state with a position
embedding for index i, pass the result through a two-layer MLP, and use
tied embedding weights to predict wi.

Configuration
for one epoch of pretraining

VCR
Q!A

val
(%)

V
+T

Mask LM [29, 106, 128] 67.2
VirTex-style [27] 67.8

Contrastive Span 69.7

V
+T

+A

Audio as target 70.4
Audio as input and target 70.7

Audio as input and target, w/o strict localization 70.6

Reserve-B 71.9

Table 1: Ablation study of our contrastive span objective. It
outperforms prior work in a Vision+Text setting, with a 1%
boost when audio is added. Our full setup, adding written
text, improves another 1%. denotes part of our full model.

b. VirTex [27]. In this objective, we likewise mask text
subsegments and extract their hidden states. The dif-
ference is that we sequentially predict tokens wi 2 w,
using a left-to-right language model (LM) with the same
architecture details as our proposed span encoder.

Results are in Table 1. Versus these approaches, our
contrastive span objective boosts performance by over 2%,
after one epoch of pretraining only on vision and text. We
hypothesize that its faster learning is caused by encouraging
models to learn concept-level span representations; this might
not happen when predicting tokens individually [23].

Audio pretraining helps, even for the audio-less VCR:

d. Audio as target. Here, the model is only given video
frames and ASR text as input. In addition to performing
contrastive-span pretraining over the missing text spans, it
does the same over the (held-out) audio span (Equation 2.
This boosts VCR accuracy by 0.7%.

e. Audio as input and target. The model does the above
(for video+text input sequences), and simultaneously
is given video+text+audio sequences, wherein it must
predict missing text. This boosts accuracy by 1% in total.

f. Sans strict localization. We evaluate the importance
of our strict localization in time. Here, in addition to
correct subsegments at the true position t as a correct
match, we count adjacent MASKed out regions as well. An
extreme version of this was proposed by [49], where a
positive match can be of any two frames in a video. Yet
even in our conservative implementation, performance
drops slightly, suggesting localization helps.

Putting these all together, we find that contrastive span pre-
training outperforms mask LM, with improved performance
when audio is used both as input and target. For our flag-
ship model, we report results in Table 1 on simultaneously
training on web-text sequences as well (Appendix C.4), this
improves performance by an additional 1%.

5

Figure 4: Pretraining progress: performance
on contrastive-span pretraining, vs. fine-
tuned VCR validation accuracy. Pretraining

Reserve-B for 9 more epochs boosts per-
formance by 5%; L by 8%.

VCR test (acc; %)

Model Q!A QA!R Q!AR

C
ap

tio
n/

O
bj

D
et

-b
as

ed

ERNIE-ViL-Large [124] 79.2 83.5 66.3
Villa-Large [39] 78.9 83.8 65.7
UNITER-Large [21] 77.3 80.8 62.8
Villa-Base [39] 76.4 79.1 60.6
VilBERT [81] 73.3 74.6 54.8
B2T2 [4] 72.6 75.7 55.0
VisualBERT [77] 71.6 73.2 52.4

V
id

eo
-b

as
ed MERLOT [128] 80.6 80.4 65.1

Reserve-B 79.3 78.7 62.6
Reserve-L 84.0 84.9 72.0

Table 2: Reserve gets state-of-the-art leader-
board performance on VCR. We compare it with
the largest submitted single models, including image-
caption models that utilize heavy manual supervision
(e.g. object detections and captions).

TVQA (acc; %)

Model Val Test

Human [75] – 89.4

Su
bt

itl
es

MERLOT [128] 78.7 78.4
MMFT-BERT [109] 73.5 72.8
Kim et al [68] 76.2 76.1

Reserve-B 82.5 –
Reserve-L 85.9 85.6

A
ud

io Reserve-B 81.3 –
Reserve-L 85.6 84.8

B
ot

h Reserve-B 83.1 82.7
Reserve-L 86.5 86.1

Table 3: Reserve gets state-of-the-art
results on TVQA by over 7%, versus prior
work (that cannot make use of audio).

4.1.2 VCR Results
Encouraged by these results, we train our models for 10
epochs on YT-Temporal-1B. Figure 4 demonstrates that fine-
tuned VCR performance tracks with the number of pretraining
epochs, as well as the validation loss.7

Finally, in Table 2, we compare Reserve against the
largest published models from the VCR leaderboard. Of note,

Reserve-L outperforms all prior work, by over 5% on
Q!AR metric. It outperforms even large ensembles (e.g. 15
ERNIE-Large’s) submitted by industry [124], though we do
not show these on this table to focus on only single models.

E�ciency. The accuracy increase of Reserve is not
simply due to compute.8 In fact, our Reserve-L re-
quires one-fifth the FLOPs of detector-based systems, like
UNITER-Large [21] (Appendix B.3). Moreover, because

Reserve-L uses a pure ViT backbone versus MERLOT’s
ViT-ResNet hybrid, it uses fewer FLOPs than MERLOT,
while scoring 7% higher. Meanwhile, Reserve-B out-
performs ‘base’ detector-based models, while using less than
one-tenth their FLOPs.

In terms of parameter count, Reserve-B is compa-
rable to prior work. On VCR, including the vision stack,

Reserve-B has 200M finetunable parameters and per-
forms similarly to the 378M parameter UNITER-Large.

Reserve-L has 644M parameters.

4.2. Finetuning on TVQA

Next, we use TVQA [75] to evaluate our model’s capacity
to transfer to multimodal video understanding tasks. In

7The plot suggests that if we pretrained longer, VCR performance might
continue to increase, though a confounding factor might be the learning-rate
schedule. With access to compute beyond our current capacity, future work
would be well-suited to consider this and other pre-training modifications.

8Here, we use FLOPs as our key e�ciency metric, as they are a critical
bottleneck in model scaling [66, 34, 130]. On the other hand, we argue
that parameter count can be misleading – for instance, many Transformer
parameters can be tied together with minimal performance loss [72].

TVQA, models are given a video, a question, and five answer
choices. The scenes come from American TV shows, and
depict characters interacting with each other through dialogue
– which past work represents through subtitles.

Audio-Subtitle Finetuning. To evaluate how much audio
can help for TVQA, we finetune Reserve jointly between
the ‘Subtitles’ and ‘Audio’ settings. Like on VCR, we
consider one sequence per candidate: each contains video
frame features, the question, the answer candidate, and a
MASK token (from where we pool a hidden representation).
During training, each sequence is duplicated: we provide
one sequence with subtitles from the video, and for the other,
we use audio. This lets us train a single model, and then test
how it will do given subtitles, given audio, or given both (by
averaging the two softmax predictions).

Results. We show TVQA results in Table 3. With
subtitles and video frames alone, our Reserve-B outper-
forms all prior work by over 3%. Combining subtitle-only
and audio-only predictions performs even better, improv-
ing over 4% versus the prior state-of-the-art, MERLOT
(and in turn over other models). The same pattern holds
(with additional performance gains) as model size increases:

Reserve-L improves over prior work by 7.6%.

4.3. Finetuning on Kinetics-600 Activity Recogni-

tion

Next, we use Kinetics-600 [19] to compare our model’s
(finetuned) activity understanding versus prior work, includ-
ing many top-scoring models that do not integrate audio.
The task is to classify a 10-second video clip as one of
600 categories. We finetune Reserve jointly over two
settings: vision only, and vision+audio.

Results. We show Kinetics-600 results on the validation
set, in Table 4. Reserve improves by 1.7% when it can
jointly represent the video’s frames with its sound. This
enables it to outperform other large models, including VATT

6

Kinetics-600 (%)

Model Top-1 Top-5

V
is

io
n

O
nl

y

VATT-Base[2] 80.5 95.5
VATT-Large [2] 83.6 96.6
TimeSFormer-L [9] 82.2 95.6
Florence [125] 87.8 97.8
MTV-Base [122] 83.6 96.1
MTV-Large [122] 85.4 96.7
MTV-Huge [122] 89.6 98.3

Reserve-B 88.1 95.8
Reserve-L 89.4 96.3

+A
ud

io Reserve-B 89.7 96.6
Reserve-L 91.1 97.1

Table 4: Reserve gets state-of-
the-art results on Kinetics-600 by
1.5% versus standard approaches
(that cannot make use of audio).

Situated Reasoning (STAR)
(test acc; %)

EPIC-Kitchens
(val class-mean R@5; %)

LSMDC
(FiB test %)

MSR-VTT QA
(test acc %)

Model Interaction Sequence Prediction Feasibility Overall Verb Noun Action Acc top1 top5

Supervised SoTA
ClipBERT [74] AVT+ [46] MERLOT [128]

39.8 43.6 32.3 31.4 36.7 28.2 32.0 15.9 52.9 43.1

ze
ro

-s
ho

t

Random 25.0 25.0 25.0 25.0 25.0 6.2 2.3 0.1 0.1 0.1 0.5
CLIP (VIT-B/16) [92] 39.8 40.5 35.5 36.0 38.0 16.5 12.8 2.3 2.0 3.0 11.9
CLIP (RN50x16) [92] 39.9 41.7 36.5 37.0 38.7 13.4 14.5 2.1 2.3 2.3 9.7
Just Ask (ZS)[123] 2.9 8.8

Reserve-B 44.4 40.1 38.1 35.0 39.4 17.9 15.6 2.7 26.1 3.7 10.8
Reserve-L 42.6 41.1 37.4 32.2 38.3 15.6 19.3 4.5 26.7 4.4 11.5
Reserve-B (+audio) 44.8 42.4 38.8 36.2 40.5 20.9 17.5 3.7 29.1 4.0 12.0
Reserve-L (+audio) 43.9 42.6 37.6 33.6 39.4 23.2 23.7 4.8 31.0 5.8 13.6

Table 5: Zero shot results. On STAR, Reserve obtains state-of-the-art results, outperforming finetuned
video models. It performs well on EPIC-Kitchens (verb and noun forecasting), along with LSMDC, despite their
long-tail distributions. On MSR-VTT QA, it outperforms past work on weakly-supervised video QA. Further, it
outperforms CLIP (that cannot handle dynamic situations), and benefits from audio when given.

[2] which learns to represent audio independently from
vision (and so cannot early-fuse them), along with the larger
MTV-Huge model [122] by 1.5%.

4.4. Zero-Shot Experiments

Next, we show that our model exhibits strong zero-shot
performance for a variety of downstream tasks. Our zero-shot
interface is enabled by our contrastive span objective. For
QA tasks that require predicting an option from a label space
of short phrases, we encode this label space as vectors, and
predict the closest phrase to a MASKed input. We consider:

i. Situated Reasoning (STAR) [119]. This task requires the
model to reason over short situations in videos, covering
four axes: interaction, sequence, prediction, and feasibil-
ity. The model is given a video, a templated question, and
4 answer choices. We convert templated questions into
literal statements (which are more similar to YouTube
dialogue); the label space is the set of four options.

ii. Action Anticipation in Epic Kitchens [26]. Here, the
goal is to predict future actions given a video clip, which
requires reasoning temporally over an actor’s motivations
and intentions. The dataset has a long tail of rare action
combinations, making zero-shot inference challenging
(since we do not assume access to this prior). As such,
prior work [46, 38] trains on the provided in-domain
training set. To adapt Reserve to this task, we
provide it a single MASK token as text input, and use as our
label space of all combinations of verbs and nouns in the
vocabulary (e.g. ‘cook apple, cook avocado’, etc.).

iii. LSMDC [82, 96]. Models are given a video clip, along
with a video description (with a MASK to be filled in). We
compare it with the vocabulary used in prior work [128].

iv. MSR-VTT QA [120]. This is an open-ended video QA
task about what is literally happening in a web video. We
use GPT3 [16], prompted with a dozen (unlabelled) ques-
tions, to reword the questions into statements with MASKs.
This introduces some errors, but minimizes domain shift.
We use a label space of the top 1k options.

For these tasks, we use N=8 video segments (dilating time
when appropriate), and provide audio input when possible.
Details and prompts are in Appendix D. We compare against
both finetuned and zeroshot models, including running CLIP
[92] on all tasks. CLIP is a strong model for zero-shot
classification, particularly when encyclopedic knowledge
about images is helpful; our comparisons showcase where
multimodal script knowledge helps.

Results. Table 5 shows our model performs competitively:

i. On STAR, it obtains state-of-the-art results, with per-
formance gain when audio is included. Interestingly,

Reserve-B outperforms its larger variant; we hy-
pothesize that this is due to limited prompt searching
around question templates. We qualitatively observed
that Reserve-L sometimes excludes topically correct
options if they sound grammatically strange (to it).

ii. On EPIC-Kitchens, our model obtains strong results at
correctly anticipating the verb and noun - despite the
heavy-tailed nature of both distributions. It is worse on
getting both right (‘action’), we suspect that this might
be due to priors (motifs) between noun and verb [129].
These are easy to learn given access to training data, but
we exclude these as we consider the zero-shot task.

iii. On LSMDC, our model obtains strong results at filling-
in-the-blank, likewise despite a heavy (unseen) frequency
bias. Notably, it outperforms CLIP significantly, with
CLIP often preferring templates that use visually-relevant
words, even if they don’t make sense as a whole. For
instance, given a clip of a mailman, CLIP chooses ‘the
mailman smiles o�,’ versus ‘the mailman takes o�.’

iv. Finally, our model performs well on MSR-VTT QA,
outperforming past work that directly rewords subtitled
instructional videos into video QA instances [123].

5. Qualitative Analysis: Why does audio help?
What can Reserve learn from both text and audio?

Three validation set examples are shown in Figure 5. The
model is given the displayed text and video frames, and must

7

stretch in the calf press
and push your hands
into the floor for more

stretch i know

... ... on the right leg for
the maximum

left leg bent and place
on top of right

leg extended
completely straight and

heel on the floor

single lick down dog
where we ... [MASK]

alright shake out your
arms and your legs if

you need forth a

because the next one
is slightly ...

weight on the legs and
get more stretch in the

calves in these 45 ...

going to pour these
over top of ...

that i've melted these
are just the wilton

candy melts and i'm

... try it anyway what ...this is a lot of popcorn
so i don't know how
this is gonna work

this into a so now what ...so that's mainly why i
turned the burner off ...

[MASK] it quits
 popping i don't

 want to burn this

... my kids i go oh
that ...

just i feel like it's so i
had kids when i was 20
by the time i was 22 i

had both

you always want to get
a better relationship

with your parents got it
i

shaking your head like
there's always room for
improvement that i like
even if you're at like the

best

over [MASK] are youthat that's all i had
control ...

i ate what i wore i kind
of embraced ...

hadn't no control over
but i knew that i could
control how my room

looked what

this time we’re holding it with the right leg

popcorn popping and forth every now and then

exhausted laugh why

Figure 5: Exploring MASKed audio self-supervision. Shown are example videos from our validation set, with predictions
from Reserve-B. During pretraining, our model progressively learns to pick up on audio-specific clues. It seems to
recognize physical dynamics of cooking popcorn, matching the first row to its MASKed audio. Likewise, it seems to use social
reasoning to match the second row to its audio. Both of these clues are orthogonal to what the subtitles provide.

match the MASK to the correct missing text and audio span (out
of 48k total in the batch). The plots show Reserve-B’s
probability of correctly identifying the correct audio or text
span, as it progresses through 10 epochs of pretraining.

Audio’s supervisory signal. In the first two rows of
Figure 5, audio provides orthogonal supervision to text:

1. In the first row, the MASKed audio contains the sound of pop-
corn pops slowing. By the final epoch, Reserve-B se-
lects this specific auditory cue with 60% probability, over
others (including from adjacent segments, at di�erent
stages of popping). Here, sound provides signal for joint
vision-text understanding of the situation, as evidenced
by its greater match probability.

2. The second row contains only the text ‘why,’ with the
audio providing greatly more information — a female-
presenting speaker (shown in the next frame) laughs,
astonished that the child (in the frame afterwards) might
want a better relationship with their parents.

3. In the third row, matching performance is similar between
modalities, possibly as the yogi is narrating over a (muted)
video recording, and not adding much information.

Role of text. Text is still a crucial complement to audio, in
terms of the supervision it provides. Consider the second row:

Reserve-B learns to match the audio almost perfectly
(perhaps reasoning that the speaker is shown in the next frame,
and is laughing). In later epochs, its text-match probability
increases: knowing that a ‘why’ question is likely to be asked
is a valid social inference to make about this (tense) situation.

Learning through multimodal reentry. Developmental
psychologists have hypothesized that human children learn
by reentry: learning connections between all senses as
they interact with the world [35, 100]. Using a held-out

modality (like audio) might support learning a better world
representation (from e.g. vision and text), by forcing models
to abstract away from raw perceptual input. Our work
suggests that reentry has potential for machines as well.

6. Conclusion, Limitations, Broader Impact
We introduced Reserve, which learns jointly through

sound, language, and vision, guided through a new pretrain-
ing objective. Our model performs well in both finetuned
and zero-shot settings, yet it has limitations. Our model only
learns from 40-second long videos; relies on ASR models for
subtitles, and can only match (not generate) text and audio.

Still, we foresee broad possible societal impact of this line
of work. Video-pretrained models might someday assist low
vision or d/Deaf users [76, 48]. Yet, the same technology
can have impacts that we authors consider to be negative,
including surveillance, or applications that hegemonize so-
cial biases. We discuss these further in Appendix A: key
dimensions include respecting user privacy during dataset
collection, exploring biases in YouTube data, dual use, and
energy consumption. We discuss our plan to release our
model and data for research use so others can critically study
this approach to learning script knowledge.

Acknowledgements
We thank the anonymous reviewers, as well as Jae Sung Park, Oren

Etzioni, Gabriel Ilharco, and Mitchell Wortsman for feedback on this work.
Thanks also to Zak Stone and the Google Cloud TPU team for providing
access to the TPU machines used for conducting experiments. Thanks to
James Bradbury and Skye Wanderman-Milne for help with JAX on TPUs.
Thanks to the AI2 ReVIZ team, including Jon Borchardt and M Kusold,
for help with the demo. This work was funded by DARPA MCS program
through NIWC Pacific (N66001-19-2-4031), and the Allen Institute for AI.
Last, but not least, thanks to the YouTubers whose work and creativity helps
machines to learn about the multimodal world.

8

References
[1] Sami Abu-El-HaÚa, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and Sud-
heendra VÚayanarasimhan. Youtube-8m: A large-scale video
classification benchmark. arXiv preprint arXiv:1609.08675,
2016. 14

[2] Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong
Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong. VATT:
transformers for multimodal self-supervised learning from
raw video, audio and text. arXiv preprint arXiv:2104.11178,
2021. 2, 7, 20, 25

[3] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider,
Relja Arandjelovi∆, Jason Ramapuram, Je�rey De Fauw, Lu-
cas Smaira, Sander Dieleman, and Andrew Zisserman. Self-
supervised multimodal versatile networks. arXiv preprint
arXiv:2006.16228, 2020. 2

[4] Chris Alberti, Je�rey Ling, Michael Collins, and David
Reitter. Fusion of detected objects in text for visual question
answering. arXiv preprint arXiv:1908.05054, 2019. 6

[5] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,
Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up
and top-down attention for image captioning and visual
question answering. In CVPR, 2018. 18, 19

[6] Tadas Baltru�aitis, Chaitanya Ahuja, and Louis-Philippe
Morency. Multimodal machine learning: A survey and tax-
onomy. IEEE transactions on pattern analysis and machine
intelligence, 41(2):423–443, 2018. 2

[7] Emily M Bender, Timnit Gebru, Angelina McMillan-Major,
and Shmargaret Shmitchell. On the dangers of stochastic
parrots: Can language models be too big? In Proceedings
of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pages 610–623, 2021. 14, 16

[8] Emily M. Bender and Alexander Koller. Climbing towards
NLU: On meaning, form, and understanding in the age of data.
In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5185–5198, Online,
July 2020. Association for Computational Linguistics. 16

[9] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
arXiv preprint arXiv:2102.05095, 2021. 7

[10] Stella Biderman, Sid Black, Charles Foster, Leo Gao, Eric
Hallahan, Horace He, Ben Wang, and Phil Wang. Rotary
embeddings: A relative revolution, 2021. [Online; accessed
]. 17

[11] Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Ka-
hembwe. Multimodal datasets: misogyny, pornography, and
malignant stereotypes. arXiv preprint arXiv:2110.01963,
2021. 16

[12] Sophie Bishop. Anxiety, panic and self-optimization: In-
equalities and the youtube algorithm. Convergence, 24(1):69–
84, 2018. 16

[13] Yonatan Bitton, Gabriel Stanovsky, Michael Elhadad, and
Roy Schwartz. Data e�cient masked language modeling
for vision and language. arXiv preprint arXiv:2109.02040,
2021. 2

[14] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S Bernstein,

Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 14

[15] Luke Breitfeller, Emily Ahn, David Jurgens, and Yulia
Tsvetkov. Finding microaggressions in the wild: A case
for locating elusive phenomena in social media posts. In
Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-
ÒCNLP), pages 1664–1674, 2019. 16

[16] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 7, 14, 16

[17] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and
Andrew Zisserman. Vggface2: A dataset for recognising
faces across pose and age. In 2018 13th IEEE international
conference on automatic face & gesture recognition (FG
2018), pages 67–74. IEEE, 2018. 14, 15

[18] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting
training data from large language models. arXiv preprint
arXiv:2012.07805, 2020. 14

[19] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about kinetics-
600. arXiv preprint arXiv:1808.01340, 2018. 2, 6, 25

[20] Robin S Chapman. Children’s language learning: An inter-
actionist perspective. The Journal of Child Psychology and
Psychiatry and Allied Disciplines, 41(1):33–54, 2000. 1

[21] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In European
conference on computer vision, pages 104–120. Springer,
2020. 2, 4, 6, 17, 18

[22] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying
vision-and-language tasks via text generation. In ICML,
2021. 2

[23] Kyunghyun Cho. Tweet. "important dependences between the
image features and words/phrases in the description could be
explained away by the dependencies among words/phrases".
5

[24] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
Don’t take the easy way out: Ensemble based methods for
avoiding known dataset biases. In EMNLP, pages 4069–4082,
Hong Kong, China, Nov. 2019. Association for Computa-
tional Linguistics. 2

[25] Matthew Crain. The limits of transparency: Data brokers
and commodification. new media & society, 20(1):88–104,
2018. 14

[26] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
, Antonino Furnari, Jian Ma, Evangelos Kazakos, Davide
Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. Rescaling egocentric vision: Collection,
pipeline and challenges for epic-kitchens-100. International
Journal of Computer Vision (ÒCV), 2021. 2, 7, 25

9

[27] Karan Desai and Justin Johnson. Virtex: Learning visual
representations from textual annotations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11162–11173, 2021. 5

[28] Sunipa Dev, Masoud Monajatipoor, Anaelia Ovalle, Ar-
jun Subramonian, Je� M Phillips, and Kai-Wei Chang.
Harms of gender exclusivity and challenges in non-binary
representation in language technologies. arXiv preprint
arXiv:2108.12084, 2021. 16

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2, 5, 14

[30] Travis L Dixon. Crime news and racialized beliefs: Un-
derstanding the relationship between local news viewing
and perceptions of african americans and crime. Journal of
Communication, 58(1):106–125, 2008. 27

[31] Travis L Dixon and Daniel Linz. Overrepresentation and
underrepresentation of african americans and latinos as
lawbreakers on television news. Journal of communication,
50(2):131–154, 2000. 27

[32] Jesse Dodge, Maarten Sap, Ana Marasovic, William Agnew,
Gabriel Ilharco, Dirk Groeneveld, and Matt Gardner. Docu-
menting the english colossal clean crawled corpus. CoRR,
abs/2104.08758, 2021. 16

[33] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction.
In Proceedings of the IEEE international conference on
computer vision, pages 1422–1430, 2015. 4

[34] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3, 4, 6, 19

[35] Gerald M Edelman. Neural darwinism: selection and reen-
trant signaling in higher brain function. Neuron, 10(2):115–
125, 1993. 1, 8

[36] David F Fouhey, Wei-cheng Kuo, Alexei A Efros, and
Jitendra Malik. From lifestyle vlogs to everyday interactions.
In CVPR, 2018. 27

[37] Christian Fuchs. An alternative view of privacy on facebook.
Information, 2(1):140–165, 2011. 14

[38] Antonino Furnari and Giovanni Maria Farinella. Rolling-
unrolling lstms for action anticipation from first-person
video. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2020. 7, 25

[39] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng,
and Jingjing Liu. Large-scale adversarial training for
vision-and-language representation learning. arXiv preprint
arXiv:2006.06195, 2020. 6

[40] Leo Gao, Stella Biderman, Sid Black, Laurence Golding,
Travis Hoppe, Charles Foster, Jason Phang, Horace He,
Anish Thite, Noa Nabeshima, et al. The pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020. 23

[41] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jen-
nifer Wortman Vaughan, Hanna Wallach, Hal Daumeé III,

and Kate Crawford. Datasheets for datasets. arXiv preprint
arXiv:1803.09010, 2018. 27

[42] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin
Choi, and Noah A Smith. Realtoxicityprompts: Evaluating
neural toxic degeneration in language models. In Findings
of the Association for Computational Linguistics: EMNLP
2020, pages 3356–3369, 2020. 16

[43] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In Proc. IEEE ICASSP
2017, New Orleans, LA, 2017. 29

[44] Tarleton Gillespie. Content moderation, ai, and the question
of scale. Big Data & Society, 7(2):2053951720943234, 2020.
16

[45] Franklin D Gilliam Jr, Shanto Iyengar, Adam Simon, and
Oliver Wright. Crime in black and white: The violent,
scary world of local news. Harvard International Journal of
press/politics, 1(3):6–23, 1996. 27

[46] Rohit Girdhar and Kristen Grauman. Anticipative video
transformer. arXiv preprint arXiv:2106.02036, 2021. 7, 25

[47] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio
spectrogram transformer. arXiv preprint arXiv:2104.01778,
2021. 3, 18

[48] Steven M Goodman, Ping Liu, Dhruv Jain, Emma J McDon-
nell, Jon E Froehlich, and Leah Findlater. Toward user-driven
sound recognizer personalization with people who are d/deaf
or hard of hearing. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 5(2):1–23,
2021. 8

[49] Daniel Gordon, Kiana Ehsani, Dieter Fox, and Ali Farhadi.
Watching the world go by: Representation learning from
unlabeled videos. arXiv preprint arXiv:2003.07990, 2020. 5

[50] Jonathan Gordon and Benjamin Van Durme. Reporting
bias and knowledge acquisition. In Proceedings of the 2013
workshop on Automated knowledge base construction, pages
25–30. ACM, 2013. 16

[51] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the V in vqa matter: Elevating
the role of image understanding in visual question answering.
In CVPR, volume 1, page 9, 2017. 2

[52] Ben Green. Good” isn’t good enough. In Proceedings of the
AI for Social Good workshop at NeurIPS, 2019. 16

[53] Daniel Gri�n and Jae Lim. Signal estimation from modified
short-time fourier transform. IEEE Transactions on acoustics,
speech, and signal processing, 32(2):236–243, 1984. 18

[54] Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas
Dengel. Audioclip: Extending clip to image, text and audio.
arXiv preprint arXiv:2106.13043, 2021. 2, 29

[55] Foad Hamidi, Morgan Klaus Scheuerman, and Stacy M
Branham. Gender recognition or gender reductionism? the
social implications of embedded gender recognition systems.
In Proceedings of the 2018 chi conference on human factors
in computing systems, pages 1–13, 2018. 16

[56] Donna Haraway. Situated knowledges: The science question
in feminism and the privilege of partial perspective. Feminist
studies, 14(3):575–599, 1988. 16

10

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 19

[58] Don Heider. White news: Why local news programs don’t
cover people of color. Routledge, 2014. 27

[59] Jack Hessel and Lillian Lee. Does my multimodal model
learn cross-modal interactions? it’s harder to tell than you
might think! In EMNLP, 2020. 2

[60] Jack Hessel, Bo Pang, Zhenhai Zhu, and Radu Soricut. A case
study on combining ASR and visual features for generating
instructional video captions. In CoNLL, Nov. 2019. 4

[61] Dirk Hovy and Shrimai Prabhumoye. Five sources of bias
in natural language processing. Language and Linguistics
Compass, 15(8):e12432, 2021. 14

[62] Gabriel Ilharco, Yuan Zhang, and Jason Baldridge. Large-
scale representation learning from visually grounded untran-
scribed speech. In Proceedings of the 23rd Conference on
Computational Natural Language Learning (CoNLL), pages
55–65, 2019. 2

[63] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V Le, Yunhsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. arXiv preprint
arXiv:2102.05918, 2021. 2, 4

[64] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. Spanbert: Improving pre-
training by representing and predicting spans. Transactions
of the Association for Computational Linguistics, 8:64–77,
2020. 5, 21

[65] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara
Kiesler. “my data just goes everywhere:” user mental models
of the internet and implications for privacy and security.
In Eleventh Symposium On Usable Privacy and Security
({SOUPS} 2015), pages 39–52, 2015. 14, 27

[66] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Je�rey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 6, 19

[67] Os Keyes, Zoë Hitzig, and Mwenza Blell. Truth from the
machine: artificial intelligence and the materialization of
identity. Interdisciplinary Science Reviews, 46(1-2):158–175,
2021. 16

[68] Seonhoon Kim, Seohyeong Jeong, Eunbyul Kim, Inho Kang,
and Nojun Kwak. Self-supervised pre-training and con-
trastive representation learning for multiple-choice video
qa. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13171–13179, 2021. 6

[69] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014. 4

[70] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (bit): General visual representation learning. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16,
pages 491–507. Springer, 2020. 4

[71] Jatin Lamba, Jayaprakash Akula, Rishabh Dabral, Preethi
Jyothi, Ganesh Ramakrishnan, et al. Cross-modal learning for
audio-visual video parsing. arXiv preprint arXiv:2104.04598,
2021. 2

[72] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite
bert for self-supervised learning of language representations.
In International Conference on Learning Representations,
2019. 6, 19

[73] Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
Mixout: E�ective regularization to finetune large-scale pre-
trained language models. In International Conference on
Learning Representations, 2019. 24

[74] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert
for video-and-language learning via sparse sampling. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7331–7341, 2021. 2,
7

[75] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.
Tvqa: Localized, compositional video question answering.
In EMNLP, 2018. 2, 6

[76] Marco Leo, G Medioni, M Trivedi, Takeo Kanade, and
Giovanni Maria Farinella. Computer vision for assistive
technologies. Computer Vision and Image Understanding,
154:1–15, 2017. 8

[77] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019. 2, 6

[78] Xudong Lin, Gedas Bertasius, Jue Wang, Shih-Fu Chang,
Devi Parikh, and Lorenzo Torresani. Vx2text: End-to-end
learning of video-based text generation from multimodal
inputs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7005–7015,
2021. 2

[79] Jing Liu, Xinxin Zhu, Fei Liu, Longteng Guo, ZÚia Zhao,
Mingzhen Sun, Weining Wang, Jinqiao Wang, and Hanqing
Lu. Opt: Omni-perception pre-trainer for cross-modal under-
standing and generation. arXiv preprint arXiv:2107.00249,
2021. 2

[80] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4

[81] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViL-
BERT: Pretraining task-agnostic visiolinguistic representa-
tions for vision-and-language tasks. In Advances in Neural
Information Processing Systems, pages 13–23, 2019. 2, 6

[82] Tegan Maharaj, Nicolas Ballas, Anna Rohrbach, Aaron C
Courville, and Christopher Joseph Pal. A dataset and ex-
ploration of models for understanding video data through
fill-in-the-blank question-answering. In Computer Vision
and Pattern Recognition (CVPR), 2017. 7, 26

[83] Alice E Marwick and danah boyd. Networked privacy: How
teenagers negotiate context in social media. New media &
society, 16(7):1051–1067, 2014. 14

[84] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.

11

HowTo100M: Learning a Text-Video Embedding by Watch-
ing Hundred Million Narrated Video Clips. In ICCV, 2019.
14

[85] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
HowTo100M: Learning a Text-Video Embedding by Watch-
ing Hundred Million Narrated Video Clips. In ICCV, 2019.
27

[86] Heather Molyneaux, Susan O’Donnell, Kerri Gibson, Janice
Singer, et al. Exploring the gender divide on youtube: An
analysis of the creation and reception of vlogs. American
Communication Journal, 10(2):1–14, 2008. 16

[87] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman.
Voxceleb: a large-scale speaker identification dataset. arXiv
preprint arXiv:1706.08612, 2017. 14, 15, 28, 29

[88] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud
Texier, and Je� Dean. Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350, 2021.
17

[89] Jean Piaget and Margaret Trans Cook. The origins of intelli-
gence in children. 1952. 1

[90] Karol J. Piczak. ESC: Dataset for Environmental Sound
Classification. In Proceedings of the 23rd Annual ACM
Conference on Multimedia, pages 1015–1018. ACM Press.
28, 29

[91] Yael Pritch, Sarit Ratovitch, Avishai Hendel, and Shmuel
Peleg. Clustered synopsis of surveillance video. In 2009
Sixth IEEE international conference on advanced video and
signal based surveillance, pages 195–200. IEEE, 2009. 16

[92] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
arXiv preprint arXiv:2103.00020, 2021. 2, 4, 7, 14, 15, 16,
23, 25, 29

[93] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning
Research, 21:1–67, 2020. 14, 16, 21, 27

[94] Micah Rajunov and A Scott Duane. Nonbinary: Memoirs of
Gender and Identity. Columbia University Press, 2019. 16

[95] Manoel Horta Ribeiro, Raphael Ottoni, Robert West,
Virgílio AF Almeida, and Wagner Meira Jr. Auditing radi-
calization pathways on youtube. In Proceedings of the 2020
conference on fairness, accountability, and transparency,
pages 131–141, 2020. 16

[96] Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket
Tandon, Chris Pal, Hugo Larochelle, Aaron Courville, and
Bernt Schiele. Movie description. International Journal of
Computer Vision, 2017. 2, 7, 26

[97] Andrew Rouditchenko, Angie Boggust, David Harwath,
Brian Chen, Dhiraj Joshi, Samuel Thomas, Kartik Audhkhasi,
Hilde Kuehne, Rameswar Panda, Rogerio Feris, et al. Avl-
net: Learning audio-visual language representations from
instructional videos. arXiv preprint arXiv:2006.09199, 2020.
2, 3

[98] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello.
A dataset and taxonomy for urban sound research. In Pro-
ceedings of the 22nd ACM international conference on
Multimedia, pages 1041–1044, 2014. 28, 29

[99] Roger C. Schank and Robert P. Abelson. Scripts, plans, and
knowledge. In Proceedings of the 4th International Joint
Conference on Artificial Intelligence - Volume 1, ÒCAI’75,
pages 151–157, San Francisco, CA, USA, 1975. Morgan
Kaufmann Publishers Inc. 1

[100] Linda Smith and Michael Gasser. The development of
embodied cognition: Six lessons from babies. Artificial life,
11(1-2):13–29, 2005. 1, 8

[101] Nick Srnicek. Platform capitalism. John Wiley & Sons,
2017. 16

[102] Michael Strangelove. Watching YouTube. University of
Toronto press, 2020. 14, 16

[103] Emma Strubell, Ananya Ganesh, and Andrew McCallum.
Energy and policy considerations for deep learning in nlp. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3645–3650, 2019. 17

[104] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. Roformer: Enhanced transformer with rotary position
embedding. arXiv preprint arXiv:2104.09864, 2021. 17

[105] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. VideoBERT: A joint model for video and
language representation learning. In ICCV, 2019. 2

[106] Hao Tan and Mohit Bansal. LXMERT: Learning cross-
modality encoder representations from transformers. In
EMNLP, 2019. 2, 4, 5, 17

[107] Rachael Tatman. Gender and dialect bias in youtube’s
automatic captions. EACL 2017, page 53, 2017. 16

[108] Hugo Touvron, Andrea Vedaldi, MatthÚs Douze, and Herve
Jegou. Fixing the train-test resolution discrepancy. Advances
in Neural Information Processing Systems, 32:8252–8262,
2019. 18

[109] Aisha Urooj, Amir Mazaheri, Mubarak Shah, et al. Mmft-
bert: Multimodal fusion transformer with bert encodings
for visual question answering. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: Findings, pages 4648–4660, 2020. 6

[110] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, ˇukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 3,
18

[111] Aurélie Villard, Alan Lelah, and Daniel Brissaud. Drawing
a chip environmental profile: environmental indicators for
the semiconductor industry. Journal of Cleaner Production,
86:98–109, 2015. 17

[112] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial
Hebert. An uncertain future: Forecasting from static images
using variational autoencoders. In European Conference on
Computer Vision, pages 835–851. Springer, 2016. 4

[113] Feng Wang and Huaping Liu. Understanding the behaviour of
contrastive loss. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2495–
2504, 2021. 4

12

[114] Luyu Wang, Pauline Luc, Adria Recasens, Jean-Baptiste
Alayrac, and Aaron van den Oord. Multimodal self-
supervised learning of general audio representations. arXiv
preprint arXiv:2104.12807, 2021. 2

[115] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu,
Ron J Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao,
Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-
to-end speech synthesis. arXiv preprint arXiv:1703.10135,
2017. 18

[116] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. Simvlm: Simple visual language
model pretraining with weak supervision. arXiv preprint
arXiv:2108.10904, 2021. 2

[117] Zeerak Waseem, Smarika Lulz, Joachim Bingel, and Isabelle
Augenstein. Disembodied machine learning: On the illusion
of objectivity in nlp. arXiv preprint arXiv:2101.11974, 2021.
16

[118] Georg Wiese, Dirk Weissenborn, and Mariana Neves. Neu-
ral domain adaptation for biomedical question answering.
In Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages 281–289,
2017. 24

[119] Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B. Tenenbaum,
and Chuang Gan. Star: A benchmark for situated reasoning
in real-world videos. 2021 Conference on Neural Information
Processing Systems, 2021. 2, 7, 25

[120] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang,
Xiangnan He, and Yueting Zhuang. Video question an-
swering via gradually refined attention over appearance and
motion. In Proceedings of the 25th ACM international
conference on Multimedia, pages 1645–1653, 2017. 2, 7, 26

[121] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,
Armen Aghajanyan, and Florian Metze Luke Zettle-
moyer Christoph Feichtenhofer. Videoclip: Contrastive
pre-training for zero-shot video-text understanding. arXiv
preprint arXiv:2109.14084, 2021. 2

[122] Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu,
Mi Zhang, Chen Sun, and Cordelia Schmid. Multi-
view transformers for video recognition. arXiv preprint
arXiv:2201.04288, 2022. 7

[123] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev,
and Cordelia Schmid. Just ask: Learning to answer ques-
tions from millions of narrated videos. arXiv preprint
arXiv:2012.00451, 2020. 2, 7, 27

[124] Fei Yu, JÚi Tang, Weichong Yin, Yu Sun, Hao Tian, Hua
Wu, and Haifeng Wang. Ernie-vil: Knowledge enhanced
vision-language representations through scene graph. arXiv
preprint arXiv:2006.16934, 2020. 2, 6

[125] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,
Boxin Li, Chunyuan Li, et al. Florence: A new foundation
model for computer vision. arXiv preprint arXiv:2111.11432,
2021. 7

[126] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi.
From recognition to cognition: Visual commonsense rea-
soning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6720–6731,
2019. 2, 5, 18

[127] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan
Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi. De-
fending against neural fake news. In Advances in Neural
Information Processing Systems 32, 2019. 14, 16

[128] Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi. Merlot:
Multimodal neural script knowledge models. arXiv preprint
arXiv:2106.02636, 2021. 1, 2, 4, 5, 6, 7, 14, 16, 17, 18, 20,
24, 26, 27, 28

[129] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi.
Neural motifs: Scene graph parsing with global context. In
Conference on Computer Vision and Pattern Recognition,
2018. 7

[130] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and
Lucas Beyer. Scaling vision transformers, 2021. 4, 6, 17

[131] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei
Zhang, LÚuan Wang, Yejin Choi, and Jianfeng Gao. Vinvl:
Revisiting visual representations in vision-language models.
arXiv preprint arXiv:2101.00529, 2021. 17

[132] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D
Manning, and Curtis P Langlotz. Contrastive learning of
medical visual representations from paired images and text.
arXiv preprint arXiv:2010.00747, 2020. 2

[133] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez,
and Kai-Wei Chang. Men also like shopping: Reducing
gender bias amplification using corpus-level constraints. In
Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2979–2989, 2017.
16

[134] Shoshana Zubo�. Big other: surveillance capitalism and
the prospects of an information civilization. Journal of
Information Technology, 30(1):75–89, 2015. 16

13

Abstract

We provide the following materials in the appendix:
• A full broader impact statement (Section A)
• Details about our model architecture (Section B)
• Details about how we provide video data into the model,

including how we align the modalities and perform the
masking (Section C

• Details about how we adapted our model to downstream
tasks (Section D)

• Details about how we collected data (Section E)
• Additional experiments (Section F)

A. Broader Impact Statement
In this paper, we have presented a model for learning

multimodal neural script knowledge, through incorporation
of audio as a first-class citizen alongside text and video frames.
We argue that academic study of this learning paradigm is
important, in part because it relates to how we as humans
understand the world. We as humans process situations by
perceiving through multiple modalities and interpreting the
result holistically.

At the same time, the work and methodology that we
outlined risks dual use. Like other large machine learning
systems pretrained on web data, our system may reproduce
harmful social biases present in its training data. While
a variety of past work has studied risks of language-only
pretraining [127, 14, 7, 61], the video-centric pretraining
that we explore in our work might have di�erent benefits and
risks. We discuss these below, along with how we worked to
mitigate them through our work.

A.1. Privacy.

A significant risk with training on data at YouTube scale
is protecting user privacy. We took several proactive steps to
ensure this, that in turn build o� prior work and community
norms [1, 84, 128]:

a. We release only the video IDs for download, following
prior work [1, 84]. Thus, if a user deletes a video o� of
YouTube, it becomes removed from YT-Temporal-1B as
well, giving content creators a right to opt out of all uses
of their videos.

b. Building o� of past work [128], we directed our data
collection towards public and monetized channels. These
channels are identifiable insofar as they contain more
subscribers, and more videos. They include companies
that have o�cial accounts, including journalism outlets
like the New York Times and Vox. They also include
individuals for whom making public YouTube videos
is their full time job. In either case, our use videos in
question for research purposes can be seen as fair use.

Accuracy (%)
Model Voice Image+Voice Image

Reserve-L 10.8 9.6 10.7
CLIP ViT-B/16 [92] 86.0

Table 6: Zero-shot person (face/voice) recognition accuracy
on VoxCeleb2 [87] and VGGFace2 [17], using di�erent
modalities. While Reserve can perform person recogni-
tion from several modalities, its performance is much lower
than the recognition-optimized CLIP model in the image-to-
name setting. We hypothesize that this is due to a similarity
between this setting and CLIP’s pretraining data – news
articles often include celebrity images, paired with their
names.

Framing of privacy. Privacy is a nuanced topic with
many societally, culturally, and generationally-specific in-
terpretations. We took inspiration from Marwick and Boyd
[83]’s framework of networked privacy, which posits that
users posting public videos might encode private information
– enough so that their intended viewership (friends, possibly)
can catch the gist, but not enough so as to leak private details
like phone numbers to the world.

Through the lens of networked privacy, we see key dif-
ferences between studying videos on a moderated platform,
versus NLP work that trains models from the open web (e.g.
[29, 93, 16]). When YouTube users upload videos, they tend
to understand details of its privacy policy, beyond consenting
to it [65]. Likewise, YouTubers typically upload their own
videos [102]; the platform deters users from re-posting other
users’ content. These factors di�er from text on the open
web. Today, ‘data brokers’ post private details (like phone
numbers) to the web for profit [25]; concerningly, a study
on language models suggests that models are vulnerable at
memorizing this private information [18].

It is worth examining our research through other framings
of privacy as well. For example, internet platforms profit
o� of user data, whereas users do not share equally in these
profits [37]. For this, and for the other reasons mentioned,
we aim to release our model only for research-based use.

A.1.1 Empirical study: can Reserve identify indi-
vidual celebrities?

Inspired by work studying language model memorization
of private information [18], we wish to empirically probe

Reserve’s ability to recognize individuals. Our goal
during model development was not to optimize for this
ability. Instead, our goal was to study models for multimodal
script knowledge (what people might be doing in a situation
over time, and why) instead of long-tailed visual recognition
(including who those individuals are). These goals might

14

trade o� – for instance, our training data only has individuals’
names when they are mentioned in ASR subtitles, a pairing
that might be significantly noisier than images and text on
the open web.

We study this capacity on the VoxCeleb2 and VGGFace2
datasets [87, 17], where we created a test set of 120 celebrities,
with 100 samples of each. We study these datasets not to
promote them, but to establish a conservative upper-bound
for the capacity of a model to recognize non-celebrities. We
hypothesize that if Reserve struggles to select the right
celebrity out of 120 predefined options, it would struggle
much more at identifying random people (where the set of
candidate names is much greater). We test this hypothesis
over three zero-shot settings:

1. Voice to name. Given an audio clip sampled for a
celebrity, we encode it with our model’s audio encoder.
We provide our model’s joint encoder the text ‘the sound
of MASK’, followed by the encoded audio. A blank image
is provided. We extract the representation on top of the
MASK, and choose the most similar celebrity name.

2. Image+voice to name. Here, we adopt the same format
as ‘Audio to name,’ except we additionally encode an
image of the celebrity’s face in question.

3. Image to name. Here, Reserve encodes an image
of the celebrity in question, and we provide it with text ‘A
picture of MASK.’ No audio is provided. Using our model’s
joint encoder, we select the closest encoded celebrity
name, out of all options.
We use this format to compare to a CLIP model, which
was trained on web images with captions [92]. For the
CLIP comparison, we use it to encode each image, and
for all considered celebrity names, the sentence ‘A picture
of ${name}’. We choose the closest encoded sentence to
the encoded image.

We show our results in Table 6. In all modes, our model
is less than 11% accurate at recognizing celebrities. Curi-
ously, the accuracy drops given both the image and the voice,
suggesting that the way we fused a celebrity’s image and
voice together might be outside the model’s training distribu-
tion. These results are significantly lower than CLIP’s 86%
accuracy at classifying a person from their image.

In Figure 6, we investigate more into which celebrities
our model is best at recognizing. Only a few celebrities are
reliably classified; these tend to be very famous celebrities
like Oprah Winfrey and Justin Bieber. Several sports players
are recognized well (including Lebron James and Roger
Federer), which could imply that our model learned their
identities from watching sports replays or commentary. Most
other celebrities are hardly recognized, whereas CLIP does
well across the board.

Results summary. Together, these results show that
while models like CLIP focus on encyclopedic knowledge

Figure 6: VoxCeleb2 results per-celebrity, comparing
Reserve-L versus CLIP ViT-B/32 in the same ‘image-

text’ setting. Our model reliably recognizes A-list celebrities
like Oprah Winfrey, very famous musicians (Justin Bieber)
and sports players (LeBron James). However, it struggles
on every other celebrity, particularly compared with CLIP.
This suggests that our model primarily learns semantic as
opposed to recognition-level encyclopedic knowledge.

15

that results in strong zero-shot person recongition accuracy,
Reserve is not as e�ective as other models in memoriz-

ing particular celebrities– and, thus, perhaps not as e�ective
as memorizing particular non-celebrities. These results sug-
gest that Reserve’s objectives and data might make it
less of a concern to release privacy-wise, versus models
trained on web images with captions.

As the rest of the paper emphasizes however, Reserve

performs well on tasks with temporal understanding and com-
monsense reasoning as the primary goal. On a broader level,
these results suggest that it is possible to learn strong models
about temporal reasoning without person-level memorization,
though more work is needed.

A.2. Biases in (pre)training data.

The ‘knowledge’ that our model learns should be viewed
as situated within YouTube [67], which has numerous biases
(that we will discuss next). Past work has made similar
observations for language model pretraining on the open
web[7]. One of the root causes of such bias is learning
objectives that encourage memorization of surface level
cooccurences, rather than truly causal factors [56, 8, 117].
Though it is possible that in the very long term, a paradigm
of grounded learning might resolve some of these issues, the
objectives in this work still likely reify biases that exist in the
YouTube data.

Platform biases. Unlike many other pretraining e�orts,
that scrape data from the open internet (e.g. [93, 16, 92])
which directly leads to toxic biases (e.g. [42, 32, 11]); we
trained our model on YouTube, which is a moderated platform
[101]. Though the content moderation might perhaps reduce
overtly ‘toxic’ content, social media platforms like YouTube
still contain harmful microagressions [15], and alt-lite to
alt-right content [95]. Additionally, it should be mentioned
that the content moderation on YouTube disproportionately
filters out minoritized voices [44]. Thus, despite us not
using any word-based ‘blocklist,’ our model’s pretraining
data is still biased [32]. Even without videos being explicitly
removed, the ‘YouTube algorithm’ incentivizes the produc-
tion of certain types of content over others [12, 102]; e.g.
people’s roles in YouTube videos tend to be highly gendered
[86], which might bias situation understanding [133].

Bias amplification. In this work, we pretrained a model
primarily on ASR text, which is itself produced by another
model. The automatic captions in YouTube are known
to su�er from gender bias [107], which our model (like
neural models generally) might in turn amplify [133]. The
transcriptions on YouTube are also likely poor at handling
important identity markers, like pronouns. Already, text-only
models like BERT struggle with pronouns like they/them
and zi/zir; our reliance on ASR text makes our corpus
likely worse in this regard [28]. While past work, namely
MERLOT [128], ‘cleaned’ this ASR text – through another

large language model – we opted not to do so for this work
due to computational expense. Though in that work, the
ASR-denoisification was found to boost performance in VCR,
it seems unlikely that it would solve this core issue of model
bias.

A.3. Dual use.

Learning connections between video, audio, and text –
though an important area of study as we have argued – can
be used for undesirable applications, beyond what we have
outlined under ‘biases.’ We outline and discuss a few below.

Generating fake content. A concern for pretrained
models is that they can generate fake content, that could
be used by ‘bad’ actors for their ends [127]. It should be
noted that our model cannot explicitly ‘generate’ text, audio,
or vision in a direct sense. Nonetheless, however, it is
possible that a finetuned or expanded version of this model
could be used for that purpose – and that our model would
be more helpful to such an actor versus them training their
own (perhaps larger) model from scratch.

Surveillance. Our model might contain representations
that enable it to be used in surveillance applications. As
we note in Appendix A.1.1, our model’s low performance
on person recognition suggests that it might perform poorly
recognition-focused applications. Still, one possibility is that
a neural script knowledge could ‘summarize’ surveillance
videos in some form (like identifying an activity of interest),
without identifying the person(s).

We suspect (but cannot definitively prove) that the report-
ing bias of the YouTube data that it was trained on might make
it poor for such a surveillance-focused task [50]. Namely,
most surveillance videos are sparse in nature – finding an
activity of interest is like finding a ‘needle in a haystack’
[91]. Though, some surveillance videos are inevitably posted
on YouTube and then captioned, these disproportionately
contain interesting events (like somebody’s car crashing into
a house). It is not clear whether our system could be eas-
ily adapted to such a sparse problem; the amount of work
required suggests that it might be out-of-scope at least for
low-skill actors. On the other hand, this broad research
agenda, and perhaps all of computer vision for that matter,
might enable large actors to do just that [134]; which might
not be addressable through purely technical solutions [52].

Harmful outcomes if deployed. Beyond the biases that
our system possesses, some applications of our system – if
deployed in production – could cause harm, particularly to
groups already harmed by AI systems. Of note, linking
someone’s voice with their appearance is not always a good
thing [94]. Likely some of the key features that our model
learns – though we did not teach it this explicitly – involve rec-
ognizing gender, and this is harmful especially to transgender
individuals [55].

16

A.4. Energy consumption.

Our model cost a lot amount of energy to pretrain [103];
roughly 3 weeks of time on a TPU v3-512. The total carbon
footprint of our work was a net 8.23 tons of CO2 equivalent,
which is roughly 4.5% of the emissions of a jet plane flying
round-trip from San Francisco to New York.9

At the same time, it is possible that our model could
save energy overall, when shared with researchers who build
o� of our system. Indeed, Reserve-B uses less energy
than MERLOT [128] (due to a smaller vision backbone, and
smaller image sizes), MERLOT in turn is more e�cient than
past work which used expensive detector-based backbones
(e.g. [106, 21, 131]), that are made more expensive because
some of their computational primitives (like non-maximum
suppression) are di�cult to make e�cient on-device.

A.5. Synthesis.

With these risks in mind, we release our video IDs, as well
as Reserve’s checkpoints, exclusively for research use.
We believe that at this point in time, we as a field lack full
knowledge of the privacy, bias, and dual-use risks of video-
based models – though, we hope that our analysis in this
section provides a good starting point. For instance, while
the objectives that we have studied were designed to promote
learning general neural script knowledge above encyclopedic
memorization, they have not yet been tested in all possible
cases. By opening our models to the research community,
we hope to promote fundamental work in uncovering both
promising aspects of these systems, alongside examining
their risks. We hope to contribute to these lines of research
as well.

B. Model implementation details
In this section, we discuss at a more in-depth, technical

level, how we implement certain aspects of Reserve,
and other details (like its runtime in FLOPs). We discuss
our use of rotary position encodings (B.1), how we set the
sequence lengths for the model (B.2), measure the model’s
computational footprint (B.3), list hyperparameters (B.4),
and discuss several training strategies (B.5.

B.1. Rotary position encoding

We use a rotary position encoding to model the relative
location of input sequences [104, 10]. We chose this primarily

9CO2 Calculation. It is also important to consider the location where
these TPUs are located, as the renewables portion at each datacenter is
not equal [88]. Our TPUs were in the ‘europe-west4’ region, which uses
on average 60% carbon-free energy, and a Grid Carbon intensity of 0.410
kgCO2eq / kWh. A single TPU v3 processor (with 8 cores over 2 chips)
has a power average of 283 W, so after performing the math from [88], our
training cost 20,000 kWh. This gives us a net 8.23 tons of CO2 equivalent.
It should be mentioned that this figure only covers the electricity usage given
the chips (and the datacenter), not the raw materials involved in making
these chips (which is significant [111]).

because we did not want to use absolute (additive) position
embeddings, which would have to be added to the inputs of
each encoder, and possibly at multiple levels in the hierarchy
(e.g. for the joint encoder, the video segment index t would
be needed as well).

The rotary encoding uses no parameters, and instead uses
a kernel trick to allow the model to recover relative distances
between key and query elements in a Transformer’s attention
head. This can be seen as ‘rotating’ pairs of elements; we
apply the rotation to only the first half of each 64-dimensional
head, and the second half is kept as is.

Multidimensional coordinates. We treat each token as
having a 4-dimensional position of (h,w, `, t), corresponding
to the h,w coordinates in the image, the position ` in the
text-sequence, and the segment index t. If a dimension
is irrelevant to a modality (like h,w for text), we set it to
0. Thus, for our various encoders, we use the following
coordinate schemes:

a. Video Frame Encoder (ViT): just the h,w coordinates
of the image; so (h,w, 0, 0).

b. Audio Encoder: Only the 1-D position ` of the patch in
the spectrogram: (0, 0, `, 0).

c. Text Span Encoder: Only the 1-D position ` of the token
in the input: (0, 0, `, 0).

d. Joint encoder: Here, we use all coordinates. Inputs from
the video frame encoder have coordinates (h,w, 0, t),
where t is their segment index. The text and (pooled)
audio inputs are merged, and they each have coordinates
(0, 0, `, t), where ` here is the absolute position in the
entire sequence (across segments).

As part of our implementation, we normalize the rotary
coordinates. h,w are scaled to be in the range [�1/2, 1/2],
such that text is implicitly ‘in the center’ of the image.
Likewise, ` and t are scaled to be in the range of [0, 1]. The
positions are used to compute relative distances, by using a
kernel trick to rotate coordinates in the keys and values of
each dh-sized Transformer attention head.

B.2. Sequence lengths

We briefly remark on the sequence lengths used by parts
of the model.

a. Video Frame Encoder (ViT): Most YouTube videos are
widescreen (16x9). We thus used a widescreen resolution
for our video frame encoder. It takes in patches of size
16x16, and we used a layout of 12 patches (in height)
by 20 patches (in width). This corresponds to 192x320.
Among other factors that are important are ensuring that
TPUs do not execessively pad the sequence length [130].
The sequence length is 241 in this case, as there is a
CLS token, and it gets padded to 256.
Attention pooling. As we note in the main text, after-

17

wards we apply attention pooling in a 2x2 grid (ignor-
ing the CLS token here). Similar to Transformer-style
query,key,value attention [110], the query is the average
of the vectors in the 2x2 grid; the keys and values are
learned projections of the vectors. This gives us a H/32
by W/32 grid for the joint encoder (6 x 10).

b. Audio Encoder. Our model independently encodes each
1.6 second of audio (a segment has three such ‘subseg-
ments’). We do this through spectrograms. Each window
involves 1536 samples at a sample rate of 22500 Hz,
and there are 588 samples ‘hops’ between windows. We
chose these hyperparameters largely around e�ciency.
We found that the Discrete Fourier Transform is fastest
if the window size is close to a multiple of 2. We used
a small number of mel spectrogram bins (64) because
we found that at that threshold, we could reconstruct the
original sequence at an acceptable level using the Gri�n-
Lim algorithm, [53] which itself might be a lower bound
on quality as neural methods trained for this purpose
have been shown to do better [115].
In our implementation, we compute the spectrogram for
an entire video segment (5 seconds) at once; this is of
size 64 mel bins by 192 windows. During pretraining,
we perform what is e�ectively a ‘random crop’ over
the spectrogram: we extract three sequential 64x60 sub-
spectrograms, for each audio subsegment. We constrain
them to not overlap, which means that 12 (random)
windows are held out.
We note that our Audio Encoder AST is quite di�erent
from the one proposed by [47]. Though it operates
over spectrograms, we opted for a linear ‘1-dimensional’
layout rather than a two-dimensional (image-like) one.
We also did not pretrain our audio encoder on any su-
pervised data (they used ImageNet and found, perhaps
surprisingly, that it helped initialize the model). We used
a patch size of 64 mel bins by 2 windows; the resulting
(1D) sequence is of size 30. After adding a CLS token,
the result is a sequence of length 31.
As we note in the main text, we apply attention pooling
afterwards (for all elements except the CLS token), pooling
by a factor of five to resize the length-30 sequence to a
length of 6 ‘audio tokens.’

c. Text Span Encoder: We operate on spans that are at most
of length 15, with an additional CLS token. Its length is
thus 16.

d. Joint encoder. LetL be the number of text or pooled audio
tokens given to the model per segment, on average; we set
L=20. LetT be the number of video segments. Then, the
joint model’s sequence length is T⇥(L+W/32⇥H/32).
We set T=8 (8 video segments given to the model at a
time) and used a H=192 by W=320 resolution. Our
total sequence length was thus 640.

GFlops, from VCR

Model Image
Encoder

Joint
Encoder

Total
Q!AR
Acc(%)

UNITER-Base[21] 1766 28 1794 58.2
UNITER-Large[21] 1767 99 1867 62.8

MERLOT [128] 236 67 303 65.1

Reserve-B 99 46 146 62.6
Reserve-L 176 165 341 71.5

Table 7: E�ciency metrics of our model versus others,
measured in terms of (giga) floating point operations required
to process a single image, question, and answer candidate
on VCR. We compare with the overall VCR performance on
the combined Q!AR metric. Our Reserve family of
models are significantly more e�cient than prior work, with

Reserve-L being roughly on par with MERLOT [128]
in terms of FLOPs, yet improving accuracy by over 6%.

To better adapt our model to downstream tasks – partic-
ularly single-image tasks like VCR [126], where past work
tends to use a resolution much higher than 192x320, after
pretraining, we performed FixRes pretraining (for one epoch
on Reserve-B, and one half epoch on Reserve-L
[108].10 Here, we trained the model on larger images – si-
multaneously on 288x512 widescreen images (18 patches
by 32 patches), and on 384x384 square images (24 patches
on each side). The joint encoder, correspondingly, uses a
sequence length of 1312.

During 10 epochs of pretraining, we used a cosine decay
of the learning rate down to 0.02 its maximum. During
FixRes pretraining afterwards, we warmed up the learning
rate to 0.02x its peak, over the first 1/5th of an epoch, and
afterwards used a cosine schedule to anneal it towards 0.

B.3. Efficiency metrics of our model

In Table 7, we report e�ciency metrics of Reserve,
versus others. We calculate these metrics in the context of
scoring a single VCR question and answer candidate. This
requires encoding one image, and using 128 tokens for each
question and answer combined (for all models). We compare
against a UNITER [21], which is a representative Visual-
BERT style model, along with MERLOT [128]. Our models
are far more e�cient in terms of FLOPs, with Reserve-L
being roughly on par with MERLOT, yet outperforming it by
6% in terms of VCR accuracy. We discuss key di�erences
below:

a. UNITER. We note that UNITER, like other VisualBERT
models, uses a supervised object detection backbone [5].

10We had intended to do a full epoch for Reserve-L, but our job got
preempted, and the loss seemed to have already converged.

18

This processes images using a ResNet 101 model [57],
at a resolution of 600x800; the final ResNet ‘C4’ block
is applied densely over the entire image to obtain object-
detection potentials everywhere in the image. Both
factors greatly increase the FLOPs count.
When computing UNITER’s FLOPs count, we exclude
operations like non-max suppression, which is an opera-
tion that is di�cult to implement (and thus whose FLOP
count might vary significantly depending on implemen-
tation). Our FLOPs count is thus a lower-bound. 36
detection regions are extracted, which is why the ‘joint
encoder’ for UNITER is smaller than the equivalents for
MERLOT and Reserve.

b. MERLOT. This model has two key di�erences versus
our Reserve. First, it uses a larger image resolution
for VCR: 384x704, versus our 288x512. Second, it uses
a hybrid ViT-ResNet50 backbone for encoding images.
The backbone here is lighter weight than the object
detection backbone of UNITER (in particular, the final
‘C4’ block is removed), and thus, as shown in Table 7,
though it uses more FLOPs than does our Reserve-L,
it uses far fewer FLOPs than UNITER.

We choose flops as our primary comparison metric as
past work shows that it is one of the key factors in model
scaling [66, 34]. Parameters are arguably more fungible.
For instance, in text-only representation learning, ALBERT
[72] demonstrates that it is possible to tie parameters together
at all layers of a BERT-like transformer, reducing parameters
by an order of magnitude (while not modifying compute),
with a minimal performance drop. We did not do this for
this work, as we wanted to use a more ‘vanilla’ Transformer
architecture; however, it suggests that representation learning
models with hundreds of millions of parameters might be
FLOPs bound as opposed to parameter-bound.

Nonetheless, UNITER-Base has 154 million parameters,
though some are frozen (86 million from their Transformer,
23 million from the word embedding layer, and then 44
million from their object detector [5]). UNITER-Large
has 378 million parameters (303 from their Transformer, 31
million from word embeddings, and 44 million from the same
object detector. Meanwhile, MERLOT has 223M parameters.
Versus our Reserve-B, 14 million extra parameters are
due to a larger vocabulary, and 10 million parameters are
due to a ResNet50 encoder – but these parameters have a
disproportionate impact in FLOPs count.

B.4. Full model hyperparameters

In Table 8, we present full hyperparameters for our model.
Among other details, we used AdamW as our optimizer, with
�2 = 0.98 and ✏ = 1e� 6. We increased the learning rate
linearly to its peak value (4e-4 for Reserve-B, 3e-4 for

Reserve-L) over 3750 steps (1
20 th of an epoch). Our

Base Large

A
ud

io
si

ze

Sample rate 22050 Hz
FFT hop length 588 samples
FFT window size 1536
Mel bins 64
Subsegment length 60 hops, (⇡1.6 sec)
Patch size 64 mels ⇥ 2hops
Pooling ratio 5

Final size 6 tokens

Im
ag

e

ViT patch size 16
Pretraining size 192 ⇥ 320
Res-adaptation size 288⇥512 and 384⇥384
Pooling window 2 ⇥ 2

Te
xt Max. span length 15

Mean span length 5.5

Jo
in

ts
iz

es

N video segments 16
video segment groups 2 (each with 8 segments)
Pretraining seq. length 640 (160 text&pooled audio;

480 pooled vision)
Res-adapted seq. length 1312 (160 text&pooled

audio; 1152 pooled vision)

B
at

ch
si

ze
s

Videos 1024
Frames (for matching) 16384
Masking rate 25% (of subsegments)
Text spans 49152
Audio spans 49152

ar
ch

ite
ct

ur
e

Hidden size 768 1024
Num attention heads 12 16
Size per head 64
Rotary size (per head) 32
Vision num layers 12 24
Audio num layers 12
Text-span num layers 4
Joint num layers 12 24

op
tim

iz
er

Peak learning rate 4e-4 3e-4
Weight decay 0.1
AdamW �2 0.98
AdamW ✏ 1e-6
Warmup steps 3750
Training steps 750k (+ 75k for res.

adaptation)
Training epochs 10 (+ 1 for res. adaptation)

� Maximum scale 100.0

Pretraining compute TPU v3-512
for 5 days

TPU v3-512
for 16 days

Table 8: Architecture details, and pretraining hyperparame-
ters, for both model sizes.

19

Base Large

V
C

R

Batch Size 32
Training Epochs 5
Image Size 288⇥512
Learning Rates Tried 1e-5, 2e-5, 3e-5 8e-6, 1e-5, 1.2e-5

Learning Rate 2e-5 8e-6

T
V

Q
A

Batch Size 32
Training Epochs 3
Image Size 288⇥512
Learning Rates Tried 5e-6, 1e-5 5e-6, 1e-5

Learning Rate 5e-6

K
in

et
ic

s-
60

0

Batch Size 64
Training Epochs 15
Image Size 288⇥512
Learning Rate 1e-5 5e-6
Data Augmentation From [2]

Table 9: Hyperparameters for finetuning on downstream
tasks. Note that for Kinetics-600, we tried to mimic VATT’s
setup [2], including adopting their training-epoch regime and
their data augmentation strategies. Our data augmentation
strategies were much simpler for VCR and TVQA (random
cropping, and for VCR sometimes horizontally flipping the
image); we suspect that our VCR/TVQA results could be
made higher if data augmentation was further explored.

number of warmup steps is lower than many other pretraining
work; we note that all of our contrastive objectives involve
learning a � parameter, which functions as a secondary
‘warmup.’

We did not use gradient clipping. We trained and evaluated
in 16-bit bfloat16 precision wherever we could – casting all
gradients to that precision as well, and saving the AdamW
running mean and variance to be 16-bit as well. A few
times during pretraining Reserve-L, we found that some
values in gradients would be NaN. We addressed this by
always setting NaN values to be 0. This seemed to address
the symptoms of training instability – though sometimes the
training loss would spike to roughly around the same loss as
random initialization, it always converged back to slightly
better than it was before the spike. We are not currently sure
why this happens.

B.5. Speed improvements during pretraining

We made several high-level algorithmic and engineer-
ing implementations to our implementation, which made
pretraining run faster, and that we discuss here.

Duplicated video copies. As mentioned in the main text,
we create two copies per each video – allowing us to learn
separately how to handle audio as an input as well as how
to learn from audio. We chose this in part because copying
a video does not increase the total compute requried by a

factor of two. Instead:

1. We use the image and audio encoders, to encode the
underlying video frames and audio clips only once (for
the two video copies), and then duplicate the encod-
ings; this is far more e�cient than encoding them both
separately from scratch.

2. For the two video copies, we sampled two disjoint sets
of masks (for which audio and text subsegments are
replaced with MASK) at a 25% rate. This increases the
pool of negative samples for contrastive learning, again
increasing training e�ciency.

Reducing memory usage. The memory usage of our
Transformer implementation scales quadratically with se-
quence length, which could pose a problem since we operate
on sequences of videos. We split the video into two groups
of 8 segments, and encode each group separately by the joint
encoder.

Vectorization. We vectorize all joint transformer inputs
together into a single call. During this vectorization, we
also encode the transcript (for the transcript-frame matching
objective).

We note that this vectorization is incompatible with the
Mask LM variant proposed by MERLOT [128]. In this
variant, which the authors called ‘attention masking,’ two
transformer calls must happen sequentially – first, a language
only encoder must encode the inputs and mark down (what is
presumably) visually-grounded tokens; second, these tokens
are masked for the joint encoder. We found that such an
objective was unnecessary when pretraining under our con-
trastive span approach, which in turn enabled more e�cient
pretraining.

We discuss the exact pretraining data formatting technique
that we used in the next section.

C. Pretraining Data Formatting: alignment
and masking

In this section, we discuss how we turn a video V into a
(masked) list of segments {st} for pretraining.

Recall that each segment contains a video frame vt, ASR
tokens wt, and audio at. We generate the list of segments by
iterating through the video with a 5-second sliding window.11

Audio and text subsegments for masking. We want
audio to be used in part as a target for contrastive prediction.
However, during early exploration we found that 5 seconds
of audio could correspond to many BPE tokens; roughly

11Sometimes there are long ‘pauses’ in videos where nothing gets said.
When this happens – if two segments in a row have fewer than 8 BPE tokens
– we merge them 90% of the time, in e�ect ‘fast-forwarding’ the audio and
still extracting a frame from the middle. We do this at most twice, so the
total length is at most 15 seconds here (in e�ect, a ‘playback’ rate of 1x, 2x,
or 3x). In roughly 90% of cases, the segments are 5 seconds of length.

20

15 on average. We use past work in language modeling
as a guide [64, 93] and wanted an average span length of
around 5 tokens. To get this, we split each audio segment
into three equal subsegments, each with a duration of 1.66
seconds. We can then perform masked language modeling
at the aligned subsegment level, where we mask out the text
corresponding to an audio subsegment, and have the model
(contrastively) predict the masked-out span of text, as well
as the corresponding span of audio. We use a masking rate
of 25%, which means that a quarter of the subsegments will
be corrupted and replaced by a MASK token.

In theory, splitting the videos into (masked) segments
ought to be straightforward. However, the key challenge that
we ran into is that the YouTube caption timing information
is unreliable. Problems might arise when we perform
pretraining with both audio and text, on misaligned data.
Suppose the model is given audio in segment st�1 that ends
with somebody saying the word ‘pasta.’ If the alignment
between audio and text is o�, the model might be able to
cheat the desired task by simply predicting the word ‘pasta’
for segment st – thereby turning the challenging masked-
prediction task into an easier speech recognition task; we
discuss this in more detail in Appendix C.1.

One way of addressing the timing issue would be to run
our own ASR model over all videos, but we chose not to
do this due to computational expense. Instead, we adopted
two complementary strategies. First, we trained a lighweight
regressor to refine the timing information (C.2); second, we
mask audio and text conservatively, to minimize alignment
errors (C.3). Finally, we discuss how we combine everything
e�ciently (in a vectorized way) in C.4.

C.1. YouTube Caption Timings

YouTube provides automatically generated captions for
accessibility purposes, which include timing information on
each word. In the subtitle encoding that we used (vtt), each
word w contains a single timestamp t which corresponds
to when the word should flash on-screen. The timings are
mostly accurate, but we found two key issues:

a. First, they show up on average roughly 0.1 seconds
before each word is spoken, which we suspect might be
for usability purposes (perhaps so that while the viewer
is reading the caption, they hear the word).

b. Second, with a single timestamp t for each word, it is
di�cult to infer about pauses. For each word w, we
can use its timestamp t, and the timestamps of adjacent
words, to loosely infer an interval [t0s, t

0
e] around when

the word is said. However, the interval is not tight. We
can only infer that the word is being actively spoken for
some subinterval [ts, te] such that t0s  ts  te  t

0
e.12

12Note that this is compounded with the first problem, the ground truth
interval [ts, te] might not be fully contained in the provided interval [t0s, t

0
e]

This can lead to high absolute error (in terms of a
di�erence between timesteps), when pauses occur. For
example, suppose a speaker says a word, and then pauses.
The interval given by the subtitles, [t0s, t

0
e], might be

rather large (possibly a few seconds), even though the
actual word was spoken for a fraction of that time.

C.2. Refining timing information

We trained a simple multilayer perceptron regressor to
correct the timing information of YouTube transcripts. For
data, we used 2000 videos with transcripts from YT-Temporal-
180M, and also used Google Cloud’s (highest quality, paid)
ASR service to transcribe them. After aligning the words
for these transcripts, this gave us tuples of the YouTube
ASR word w, its provided interval [t0s, t

0
e], and the ‘ground

truth’ interval [ts, te].13 Our modeling objective was then
to predict the desired o�sets with respect to the provided
interval: �s = ts � t

0
s and �e = te � t

0
e. We took a feature

based approach.
For each input (w, t0s, t

0
e), we used as features:

i. the length of w in characters,
ii. the length of w in BPE tokens,
iii. whether w is uppercase or not,
iv. the number of vowels in w,
v. the number of punctuation characters in w,
vi. the value of t0e � t

0
s.

We provided these features as input to the model, as well as
the corresponding features for the next word, and the previous
word. We z-normalized all features and used a two-layer
multilayer perceptron, with a hidden size of 32 and RELU
activations. We used a tanh activation at the end to bound
the regression. The final predictions for �s (analogously for
�e) were then given by the following equation:

�s = c tanh(w · h + b1) + b2 (3)

where h is the hidden state, and with learnable parameters c,
w, b1, and b2. The learned bounds mean that, no matter what
the input, the model will never predict an o�set of above
c+ b2 (of which it learned for both parameters c ⇡ 0.2 and
b2 ⇡ 0.11, so the o�sets can never be above 0.3 seconds).
We trained our lightweight regression model using an L1

loss, and used it to correct the timing on all of the transcripts.

C.3. Handling worst-case scenarios in masking,

when alignment isn’t perfect

The regressor that we described reduces the average
timing error of a transcript, as a preprocessing step, but it is

due to ‘captions being shown before audio’, the error here is typically small
though (0.1 seconds).

13When matching YouTube ASR to Google Cloud’s ASR, we skipped
words without an ’exact-match’ alignment, as well as words that were over
0.25 seconds apart (i.e., where either �s > 0.25 or �e > 0.25

21

w1,1

mechanism
in your back

v1 v2 v3 v4

vi
de

o
fra

m
es

al
ig

ne
d

AS
R w1,2

and then
you’re in
your hips

and

w1,3

your whole
core area to

get

w2,1

you in
position to
force the

w2,2

board and
yourself

back down
the

w2,3

wave using
the power of

the

w3,1

wave as
w3,2

well
w3,3

the best
thing to do

is really
focus

w4,1

on your
bottom turn
in focus on

w4,2

staying
crouched for

w4,3

as long as
possible

au
di

o

a1,1

mechanism
in your ba—

a1,2

ck and then
you’re in
your hips

a1,3

and your
whole core
area to get

you

a2,1

in position
to force the

a2,2

board and
yourself

back down t
—

a2,3

the wave
using the
power of

a3,1

the wave as
a3,2

well
a3,3

the best
thing to do

is really

a4,1

focus on
your bottom
turn in focus

a4,2

on staying
crouched for

as

a4,3

long as
possible

The audio has alignment errors versus the aligned ASR text. So…
1. when predicting audio and text,
first donate tokens to the predicted

text span, from given text spans

w1,1’
mechanism

in your

w1,3’
your whole
core area to

get

MASK

AUDIO

w1,2’
back and

then you’re
in your hips

and

a1,2

ck and then
you’re in
your hips

MASK

TEXT

2. when predicting text (from audio
input), sandwich the prediction

between text inputs

a3,1

the wave as
w3,2

well
w4,1

on your
bottom turn
in focus on

a4,2

on staying
crouched for

as

MASK

TEXT

w3,3

the best
thing to do

is really
focus

…………

Figure 7: An overview of our masking strategy for dealing with sequences of video frames, ASR, and audio. We have noisy
timing information for each word, so we can align the ASR text with audio spans of 1.6 seconds each, using three sub-segments
of audio and text for each video frame. However, there exist alignment errors between the ASR and audio sub-segments –
certain words (and sub-words) have phonemes that are are in the wrong segment (like ‘back’ in w1,1 is only partially said in
the first sub-segment; the ‘k’ sound is said in the second. When audio is only a target, we address these by ‘donating’ tokens to
predicted spans. When audio is only provided as input, we address this by sandwiching ‘mask’ tokens between text input (so
alignment does not ‘bleed’ over).

not perfect. Thankfully, however, we find that most of the
remaining alignment errors are single words that are slightly
misaligned. For instance, for three words wt, wt+1, wt+2,
the audio corresponding to the time interval around wt might
contain sound from wt+1 being spoken, but rarely wt+2. We
suspect this is primarily due to the di�culty inferring pauses:
by definition, no other word can be said in a pause, so the
errors are local.

We present a high level approach for masking audio and
text, that in turn addresses these alignment issues (making it
di�cult for models to cheat). A diagram is in Figure 7.

Recall that in our framework, we only either go from
‘vision and text ! text and audio’ (VT!TA), or, ‘vision, text,
and audio ! text’ (VTA!T). One of the reasons we did this
is to avoid allowing a model to cheat by performing speaker
identification (or even ‘microphone identification’), which
might be feasible if audio was given to the joint model as
input. We can handle the two cases separately:

a. Vision and text ! text and audio (VT!TA). Here, the
text as input (to the joint encoder) might overlap with the
audio we are trying to predict. Our solution here is thus
to donate nearby tokens from the predicted span, to the
input. Let the span that we are trying to predict (and that
we will ‘mask out’) have a start time of ts and an ending
time of te. If the final token in the previous text span, if
any, has a timestamp of greater than ts�0.125, we move
it to the predicted span; likewise, if the first token in the
next text span has a timestamp of less than te+0.125, we
move it to the predicted span as well.

b. Vision, text, and audio ! text (VTA!T). In this pre-
diction task, models are given information from all
modalities as input, and must predict masked-out text
spans. Note that models are only given a single ‘speech’
modality – either text, or audio – at each timestep. What
this means is that we can carefully choose which in-
put subsegments to turn into ‘audio subsegments,’ and

22

which to turn into ‘text subsegments.’ Our strategy is,
given a masked out subsegment, to turn 80% of adjacent
subsegments into ‘text subsegments.’
We give an illustration of this in Figure 7, part 2. Here
the word ‘focus’ is part of a4,1 but also w3,3). This
might make w3,3) overly easy to predict, if we gave the
model a4,1 as input. Our solution is thus to give the
model text from w3,2) and from w4,1) as input; we are
guaranteed that there is no misalignment overlap here
between input and prediction spans. All of the other
subsegments (not adjacent to one of the 25% that we
mask out) will be provided as audio.

C.4. Putting it all together, along with web text

Finally, we discuss how we combine the various masking
approaches into the prediction tasks outlined in the main text.

Each video has N = 16 video segments, and three sub-
segments of audio or text spans per segment. We consider
two sub-problems for this video sequence:

i. in VT!TA, vision and text are provided as input, and the
model must predict masked-out text and audio. These
are done on top of separately-encoded MASK tokens and
MASKAUDIO tokens, to enable the model to learn di�erent
predictions for each modality over two separate trans-
former ‘columns.’

ii. In VTA!T, vision, text and audio are provided as input, and
models must predict masked-out text. Here, we use the
term ‘predict’ as a shorthand for our contrastive objective –
in which a model must match a context (a jointly-encoded
MASK) to the exact missing span in question, where many
negative contexts and spans are provided.

We use a masking rate of 25% for audio and text sub-
segments, and there are 3 subsegments per segment. This
means that a single video instance gives us 48 ⇥ 0.25=12
masked-out spans of text, for each of VT!TA and VTA!T,
so 24 in total (as we use disjoint masked-out subsegments).
Likewise, it gives us 12 masked-out spans of audio. If we
scaled these to the whole batch of 1024 videos, we would
have 12k audio span options and 24k text span options. This
might su�ce, but scaling up the pool of candidates boosts
performance in a contrastive setting, as suggested from prior
work (e.g. [92]), and as our ablations (Table 1) support as
well. Thus, we do the following:

a. Text candidates. We scale up the text candidates by
simultaneously training the model on web text, from
The Pile [40]. The joint encoder – which can handle
pooled video, pooled audio, and BPE-encoded text – is
simultaneously given a sequence of web text, for each
video that we have. By performing the span-contrastive
objective with this piece of web text as well, we can
not only teach the model about written (as opposed to
spoken) language, but we can scale up the set of text

candidates as well.
Let each web-text sequence be of lengthL. We first divide
it into fake regions that ‘look like’ the text subsegments
in length. We do this by calculating the empirical length
distribution of the text subsegments, and then using
this (categorical) distribution to sample a sequence of
sub-segment lengths `1, . . . , `K .14 We clip the sampled
sequence, such that

P
i `i = L.

Next, we mask the fake subsegments. During pretraining,
we use text sequences of length L = 800, but a model
sequence length of only 640. Because we are masking
spans and not individual tokens, the text sequences
‘shrink’ when we mask them. We extract exactly 38
masked-out spans, which corresponds to around 25% of
total text.
Finally, we combine the target spans that we took from
the webtext sequence, with the target spans from the
video. We note that sometimes – especially in a video –
text spans might be empty. Not every 1.6 second slice
of a video has someone speaking. We thus try to not
use these empty spans in our contrastive objective. For
each video (which is paired with text for implementation
reasons) we select the ‘best’ 48 text spans out of the
(38+24) options – penalizing empty spans, and choosing
spans from videos 4x as often.
These ‘best 48’ text spans, as well as the pooled contexts
that they were paired with, will be used in the contrastive
objective. Aggregating over the entire batch of 1024
videos (and 1024 web text sequences), this gives us 49152
text spans as candidates, for the all-pairs symmetric
softmax between text spans and contexts.

b. Audio candidates. For each video, we note that we have
exactly 12 pooled MASKAUDIO tokens, where the model
is trying to predict the corresponding audio span. One
option would be be to just use those 12 corresponding
audio spans as the targets, aggregate these over the batch,
and do a symmetric-cross-entropy loss.
However, we can do even better for free. Note that for the
VTA!T direction, we might have to encode many of the
audio spans anyways, using the lower level audio encoder
(which simultaneously extracts a CLS representation and
a sequence-level pooled representation). To simplify
implementation, we encode all 48 audio spans per video.
We can use these audio spans as candidates.
Thus, we do the following when computing the loss over
audio prediction. We aggregate all 12288 contexts from
the MASKAUDIO tokens in the batch, and we aggregate all
49152 candidate audio spans. We perform an all-pairs
dot product between these two sets, and use it to compute

14The empirical distribution for each length, in order from a length of
1 to 15, is [0.03, 0.05, 0.08, 0.11, 0.13, 0.13, 0.12, 0.10, 0.07, 0.05, 0.03,
0.02, 0.01, 0.006, 0.003].

23

a symmetric cross-entropy loss over both directions. We
did not encounter any trouble using the same temperature
for both directions (even though for one direction, there
are 12288 options, and for the other, there are 49152).

The combination of these design decisions provide more
‘hard negatives’ for the model during training. We also found
that they worked well to reduce wasted computation on a
TPU. For each video, the joint transformer uses one L = 640
length sequence for transcript-frame matching, two length-L
sequences for the VT!TA direction (as we break it up into
two groups of 8 frames each), two length L sequences for
the VTA!T direction, and finally one length-L sequence of
text. These sequences can all be vectorized together, and the
total batch size is 6⇥ the number of videos. This is helpful
because using an even-numbered batch size reduces wasted
computation on a TPU.

D. Downstream Task Implementation Details
In this section, we present information for how we adapted

Reserve on downstream tasks.

D.1. Setup for finetuned tasks

For adapting Reserve in a finetuned setting, we take
the following approach. We use a linear warmup of the
learning rate over the first half of the first epoch, with a linear
decay thereafter to 0. To find the learning rate, we did a
small grid search generally centered around 1e-5. Our full
hyperparameters are shown in Table 8.

When finetuning (and pretraining), we did not use any
dropout to make implementation simpler. Instead, as a way
to apply regularization, we used the same L2 penalty as in
pretraining (a weight decay of 0.1), but with respect to the
pretrained weights. This idea was used in [118] among other
works, and although it often tends to underperform dropout
[73], it is simple to implement.

D.1.1 Visual Commonsense Reasoning

As mentioned in the main text, VCR considers two subtasks:
Q!A, where models are given a question and must choose
the right answer given four options; and QA!R, where
models are given a question (and the right answer) and must
select the right rationale.

In our setup for this task, we treat it as a four-way classifi-
cation problem, extracting a single score from each answer
or rationale candidate. An example Q!A is:

What is going to happen next? answer: person2 is going to say how cute person4’s

children are. MASK

An example QA!R:
What is going to happen next? person2 is going to say how cute person4’s children

are. rationale: It looks like person4 is showing the photo to person2, and person2 will

want to be polite. MASK

We extract representations from the MASK position (which
are of dimension dh), score them with a newly-initialized
dh⇥1weight matrix, and optimize scores with softmax-cross
entropy.

Both VCR subtasks use only a single image. We also
followed past work in ‘drawing on’ the provided detection
tags to the image [128]. These are unambiguous references to
entities that are then referred to in the question, answer, and
rationale. For example, text might reference a ‘person1’,
which corresponds to an image region. When drawing on
these detection tags, we do so in a deterministic way – for
example, ‘person1’ always gets the same box color. We
determine the box color by hashing the object’s ID (in this
case, ‘person1’) and using that to determine the hue. The
model learns the connection between boxes with di�erent
hues, and the names, during finetuning.

We randomly flip images left or right, so long as there is no
instance of the word ‘left’ or ‘right’ in the question, answer,
or rationale candidates. We did no other data augmentation
(other than randomly resizing images to between 100% to
110% of the network’s size).

D.1.2 TVQA

TVQA provides models with a video, a question, and five
answer candidates; we represent this as five distinct sequences
for the model to score (one per candidate). The version of
TVQA that we used also gives models annotations for the
time region in the video that is being referenced. It is
not clear that only using this region would provide enough
context to be able to understand what is going on – enough
to answer correctly. Thus, for each question, we extract
35 seconds of video around the provided time region. We
then provided the model with two numbers corresponding
to the time region, relative to the cropped time interval. For
example, if the provided timestamp annotation is [t0, t1], we
use the following region:

tc =
(t0 + t1)

2
(4)

ts = tc � 17.5 (5)

te = tc + 17.5 (6)

The location of [t0, t1] in relative coordinates is then:

t
r
0 =

t0 � ts

te � ts
(7)

t
r
1 =

t1 � ts

te � ts
(8)

We provide models with t
r
0 and t

r
1, multiplied by 100 and

casted to an integer. Thus, an example TVQA instance might
look like:
1 to 28 What is Janice Holding on to after

Chandler sends Joey to his room? Chandler’s tie.
MASK[subtitles or audio]

24

This text input corresponds to the first ‘segment’ of a
video; to it we append subtitles (or audio representations)
from seven segments from the provided TVQA video (with
accompanying frames).

D.1.3 Kinetics-600

We evaluate Reserve on Activity Recognition over the
Kinetics-600 dataset [19]. Here, the model has to classify
a short 10-second video clip into a mutually-exclusive set
of 600 categories, like ‘assembling bicycle’ or ‘alligator
wrestling’. We consider performing this task in a finetuned
setting, so as to better compare to prior work. We format
each example by extracting 4 video frames from the clip
(sampled uniformly), and extracting 6 audio subsegments
(totalling 10 seconds of audio). The model processes these
inputs along with a MASK token, where we extract a vector
representation. We initialize the 600-way classification layer
with the activations of our Text Span Encoder, over the names
of the 600 categories.

We finetune the model jointly over two settings: a setting
where audio is provided, and a setting where no audio is
provided, to allow us to investigate both settings. We tried
to closely follow VATT’s finetuning approach [2], including
their exact data augmentation settings. We used a batch size
of 64 videos (that we process simultaneously ‘with audio’ and
‘without audio’). We used the same image augmentation code
as VATT [2], and finetuned for 15 epochs. We used a learning
rate of 5e-6 for Reserve-L and 1e-5 for Reserve-B.

D.2. Setup and prompting for Zero-shot tasks

Here, we discuss how we set up various tasks for
Reserve in a fully zero-shot setting. In addition to

evaluating Reserve, we also evaluate CLIP [92] in the
same zero-shot setting. CLIP is not pretrained on videos,
and it cannot jointly encode text. For each task, we construct
CLIP’s label space by taking our prompt and substituting in
each possible answer option. We average together the logits
over all frames, and take a softmax, giving us a distribution
over the task-specific label space.

D.2.1 Zero-shot Action Anticipation on EPIC-Kitchens

We study the task of action anticipation from the EPIC-
Kitchens dataset [26], a large egocentric video dataset with
700 unscripted and untrimmed videos of cooking activities.
In action anticipation, a model must predict a future action
that comes ⌧a seconds after a given video clip. The observed
segments are of arbitrary length; we follow prior work [26]
and set ⌧a = 1.

The model tries to choose the correct noun and verb that
happens next, given a list of predefined options for each. We
report results on each category using the class-mean top-5
recall.

Overall Unseen Kitchen Tail Classes

Model Verb Noun Act Verb Noun Act Verb Noun Act

V
al

id
at

io
n

RULSTM [38] 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
AVT+ (TSN) [46] 25.5 31.8 14.8 25.5 23.6 11.5 18.5 25.8 12.6
AVT+ [46] 28.2 32.0 15.9 19.5 23.9 11.9 21.1 25.8 14.1

Chance 6.4 2.0 0.2 14.4 2.9 0.5 1.6 0.2 0.1
CLIP (VIT-B/16) [92] 13.3 14.5 2.0 12.3 8.4 2.1 14.3 14.3 1.7
CLIP (RN50x16) [92] 16.5 12.8 2.2 13.4 7.0 1.2 17.1 12.6 2.5

Reserve-B 17.9 15.6 2.7 11.0 15.7 4.4 18.0 12.7 2.0
Reserve-L 15.6 19.3 4.5 14.1 18.4 3.4 14.7 18.5 4.4
Reserve-B (+audio) 20.9 17.5 3.7 15.5 20.1 4.3 20.7 14.5 3.2
Reserve-L (+audio) 23.2 23.7 4.8 20.3 21.0 5.9 22.7 21.6 4.0

Te
st

RULSTM [38] 25.3 26.7 11.2 19.4 26.9 9.7 17.6 16.0 7.9
AVT+ [46] 25.6 28.8 12.6 20.9 22.3 8.8 19.0 22.0 10.1

Reserve-L (+audio) 24.0 25.5 5.8 22.7 26.4 7.0 23.7 24.2 4.7

Table 10: Reserve gets competitive results on EPIC
Kitchen Action Anticipation challenge with zero-shot, over
methods from prior work.

Zero-shot inference approach. We directly evaluate
the pretrained Reserve on action anticipation to verify
the knowledge learned during pre-training. All prior work
reported on the o�cial leaderboard use supervision from the
in-domain training set, which we do not use at all [46, 38].

For each action segment, we sample at most N = 8 image
frames and their associated audio, with fixed time interval
t = 2.0 preceding it and ending ⌧a seconds before the start
of the action. We append a MASK token as the sole text input
(at the last frame, after audio is optionally included).15 We
create short phrases out of all candidate nouns and verbs,
and use that as our label space to simultaneously predict
them both. We compute the score for each verb and noun
independently by averaging their scores, over all labels for
which they appear.

Results. We show the full zero-shot action anticipation
results in Table 10. We also show our results on the test set
here for our best performing model (Reserve-L, with
audio provided). It gets competitive results on verb and
noun prediction – with only 1.6% and 3.3% lower compared
to the challenge winner method AVT+ [46], which is fully
supervised and use additional object-level annotations. On
Unseen Kitchen and Tail Classes, our model outperforms
AVT+ on noun and verb. Overall, audio significantly im-
proves the results – Reserve-L (+audio) outperforms

Reserve-L with an average 3.0%, which suggests that it
is useful for this task.

D.2.2 Zero-shot Situated Reasoning

Next, we evaluate on situated reasoning (STAR) [119] which
requires the model to capture the knowledge from surround-
ing situations and perform reasoning accordingly. STAR

15We were unable to find a better text based prompt than this, as we
found that they often biased the model towards linguistically relevant words;
however, we suspect that such a prompt does exist.

25

dataset includes four types of questions, including interaction,
sequence, prediction, and feasibility. A model is given a
video clip, a templated question, and 4 answer choices.

Zero-shot inference approach. For each video clip, we
sample N = 8 image frames uniformly from the video, we
also optionally include the video’s sound.

To reduce domain shift between YouTube data – where
people don’t typically ask visual questions, and where ASR
typically does not insert question marks – we convert the
question-answer pair into a statement. We did so using the
question-answer templates provided by the author, with the
answer replaced by a MASK. For example, “Q: What did the
person do with the bottle? – A: Put down.” will be converted
to “The person MASK the bottle.”.

We put the converted statement into the first frame and
use the four candidate answers as a unique label space (that
di�ers from example to example). Like with EPIC-Kitchens,
we also evaluate how much audio can help by masking the
audio inputs.

Results. We show our zero-shot STAR results in Ta-
ble 5 in the main text. Our base model outperforms all
supervised prior work by 3.7%. The model with audio per-
forms better, with average 1.1% improvement. Interestingly,

Reserve-L is worse than Reserve-B, we suspect
the reason is Reserve-L is sensitive to grammar details.
Given the previous example, we note that while ‘Put down’ is
a valid answer that might make sense both semantically and
syntactically, a di�erent answer ‘pick up’ might be flagged
by some English speakers as being ungrammatical: the in-
stantiated template would then be ‘the person pick up the
bottle.’ We noticed instances of the larger model paying
greater attention to these syntax-level details, even though
they were not the focus of the task. It does suggest, how-
ever, that additional prompting (or label space augmentation)
could resolve these issues and increase performance even
further.

D.2.3 Zero-shot LSMDC

We evaluate our model on Movie Fill-in-the-Blank [96,
82] task, which based on descriptive audio description for
the visually impaired. Given a movie clip and an aligned
description with a blank in it, the task is to fill in the blank
with the correct word. Following [82], we report prediction
accuracy in test set of 30,354 examples from 10K movie
clips.

Zero-shot Inference approach. We sample N = 8
video segments uniformly over the movie clip, and extract
the audio and middle frame of each segment. We replace
the ‘blank’ token in each description with a MASK token,
and provide it (as text-based input) to the model at its final
segment. For the other segments, we optionally provide the
model with audio; for all segments, we provide the associated

image frame. We use the vocabulary set in the LSMDC
dataset as our label space (for what the ‘missing word’ might
be).

Results. Our results are shown in Table 5 in the main
text. Our model obtains 31% when audio is included, which
outperforms human text-only performance (30.2 %) [82],
predicted by human annotators. A supervised LSTM obtains
34.4% in this text-only setting [82] which suggests that there
is a certain textual bias in this task, which our model cannot
learn (as it is zero-shot). This also suggests that state-of-
the-art supervised models exploit patterns in this vocabulary
distribution.

Without such an advantage, our model performs well,
outperforming CLIP (2%) by a large margin. This suggests
that jointly reasoning over both the visual situation, and the
linguistic context of the provided sentence, is helpful for
zero-shot performance on LSMDC fill-in-the-blank.

D.2.4 Zero-shot MSRVTTQA

Finally, we evaluate our model on MSR VTT-QA, a question-
answering task over videos [120]. We provide a model with
N = 8 video segments sampled uniformly from the video
clip, and extract an image from each one. For the first seven
segments, we optionally include audio extracted from that
point; at the last segment, we insert a converted version of
the question, along with a MASK. We compare the similarity
of that hidden state to the top 2000 most common answers,
similar to past work [128].

Similar to STAR, we convert the questions into statements
to minimize drift away from the pretraining distribution. We
use GPT3 prompted with several examples for this. Our
exact prompt is the following:

Input: what is a car being driven through?

Output: a car is being driven through _.

Input: who are running across screen?

Output: _ are running across screen.

Input: when is a girl performing?

Output: a girl is performing at _.

Input: what is a cartoon doing?

Output: a cartoon is _.

Input: how many women talk in a bedroom?

Output: _ women talk in a bedroom.

Input: what a man playing while dancing with others?

Output: a man is playing _ while dancing with others.

Input: where is a flag hoisted?

Output: a flag is hoisted in _.

Input: who talks to another man on the couch?

Output: _ talks to another man on the couch.

Input: what does a teenage girl try to get at a public restroom?

Output: a teenage girl tries to get _ at a public restroom.

Input: when do the models walk as the audience watches?

Output: the models walk as the audience watches at _.

26

Input: what shows a person killing animals in a green forest?

Output: _ shows a person killing animals in a green forest.

Input: who does a man ask to go on a date?

Output: a man asks _ to go on a date.

Input: what are three people sitting on?

Output: three people are sitting on _.

Input: ${question}

Output:

Then, given a new question ${question}, GPT3 gen-
erates a converted output, wherein we can replace it’s un-
derscore with a MASK. GPT3 works well at this conversion,
though sometimes it generates a sentence where inserting the
‘correct answer’ feels gramatically strange. For example, the
question ‘how many women talk in a bedroom?’ suggests
any integer might be a reasonable answer. On the other hand,
‘_ women talk in a bedroom’ implies that ‘one’ is not a valid
answer (since ‘women’ is plural). We note that the errors
caused by this conversion technique are specific to English
grammar, and so if such a question-conversion approach was
done in other languages, there could be more (or less) errors
that directly result.

Our results are shown in Table 5. Of note, our model
through automatic question-conversion outperforms Just Ask
[123], which performs an analogous (supervised-guided)
question conversion on all its YouTube transcripts, before
pretraining. Our model also outperforms CLIP, which cannot
naturally handle dynamic situations.

E. Dataset Collection
In this section, we discussed how we curated data for

YT-Temporal-1B. We had several goals in mind. We wanted
to use only public-facing data, which motivated our choice
of YouTube as it is a public platform that users understand
is public [65]. We wanted to use this platform to examine to
what extent we can learn multimodal neural script knowledge
from web data alone.

Our data collection strategy in this work was informed
by past work, notably MERLOT [128]. That paper found
that increasing the diversity and scale of a video corpus both
allowed for better learned representations. At the same time,
the data collected by MERLOT (YT-Temporal-180M) has
issues. Of note, the authors’ scraping strategies – to prioritize
monetized content – also led to a lot of U.S. local news being
in that corpus (roughly 30% of all data). Local news might
be problematic to learn from, particularly in that quantity,
due to its numerous biases (e.g. racist coverage on ‘crime’
[45, 31, 30, 58]). Our goal was to expand the dataset in both
diversity and size to 20 million videos, while having less
local news and without scraping private content.

High level approach. We adopt a similar dataset collec-
tion strategy as in MERLOT [128]. In the first phase, we
identify a candidate set of videos ID to download. In the
second phase, we open each video ID in YouTube and apply

several filtering steps that go from inexpensive to expensive.
The filtering steps allow us to exit early and possibly avoid
downloading the video if the video seems unsuitable for our
purpose from the title, description, and captions alone.

For a Datasheet [41], please see the MERLOT paper
[128].

E.1. Candidate video IDs

For MERLOT’s YT-Temporal-180M, the bulk of the
video IDs were identified by applying breadth-first-search
on YouTube channels from HowTo100M [85] and VLOG
[36]. Each channel often links to other channels, and given
a channel it is inexpensive to obtain a list of all its videos
using the youtube-dl Python package.

In this paper, we considered numerous approaches to
search for diverse, visually grounded videos. We ended up
using an approach where we used YouTube’s recommended
videos algorithm to suggest similar videos to YT-Temporal-
180M. We went through all non-news and non-sports videos
YT-Temporal-180M, and opened each video up in YouTube.
For each other video that YouTube recommended, we re-
trieved its channel ID – giving us access to not just that
video, but all other videos. This approach yielded 2 million
channels, with 200 million videos among them.

E.2. Filtering video IDs by channel

Given this (large) list of channels, each with many videos,
we took steps to filter it further. We used the python cld3
library to remove channels whose titles might not be in
English. We then finetuned, and used, a language model to
identify channels likely to have visually grounded videos,
which we describe next.

In more detail, we selected 2000 videos, and asked workers
on Mechanical Turk to rate their level of groundedness, their
genre, and whether they had explicit content or not. The
questions we asked are shown in Figure 8. We annotated 2k
videos under this schema, and trained a model to predict the
annotations given video metadata.

For model training, we used a slightly di�erent setting
to what we gave the crowdworkers. We trained a model to
predict the labels, given a formatted list of 5 video titles
from the same channel. During training, we made the weak-
supervision assumption that all videos from a channel have
exactly the same rating (as the video we annotated). This
enabled us to collect 84k examples from our 2k annotations.
The model we chose was T5-base model [93], which generates
the labels left-to-right in text form (and which we converted
automatically to a structured representation).

We then used this model to identify channels that seem
especially promising. For each channel with at least 5 videos,
we randomly sampled 8 sets of length-5 videos, and used
the finetuned T5 model to classify them. We filtered out
any channel that had at least 25% of likely non-English or

27

${VIDEO}
Q1. How would you describe the role of English speech in the

video?

a. This video doesn’t have spoken English, or if it does, it’s
irrelevant to what’s going on in the video.
b. This video has English speech that describes, or adds onto,
the visual content.

Q2. Select at least one genres of the video:

a. Gaming
b. News
c. How-to
d. Chatting
e. Sports
f. Music
g. Movies / Drama
h. Documentary
i. Miscellaneous

Q3. Select if any of the following are true:

a. A variety of objects are interacted with.
b. A variety of actions are performed.
c. A variety of scenes are performed.
d. This video is a slideshow.
e. This video contains racist or sexist content..

Figure 8: Video annotation. We had workers on Mechanical
Turk annotate 2000 videos in our dataset with this question-
naire, allowing us to then train a model to identify suitable
channels for our purpose.

irrelevant-English videos, any channel that had at least 25%
of slideshows, and any channel that likely had racist or sexist
content.

One side benefit of this model is that it allowed us to
estimate our videos’ genre breakdown before downloading
them. We found 1% Gaming videos, 11% News videos, 20%
How-To videos, 20% ‘chatting’ videos, 5% sports videos, 5%
Music videos, 3% Movies/Drama videos, 4% Documentary
videos, and 31% Miscellaneous. The Gaming videos were
then filtered out.

We used the classification model to create a budget for
how many videos to download from each channel; with the
aim to download more videos from likely more-grounded
channels. Using the answers to Q3 (from Figure 8), we
gave each channel 1 point for likely having ‘a variety of
objects’, 2 points for ‘a variety of actions’, and 0.5 points for
‘a variety of scenes.’ We subtracted 3 points if it was likely
to be a slideshow. (Likely-racist or sexist channels were
already filtered out.) We then z-normalized and softmaxed
the channel scores, and used the result as the channel-level
budgets. Any channel with an aggregate ‘interestingness’
score of 1 standard deviation above the mean would then
have a budget of 8x larger than the mean. We clipped the
channel-level budgets to include at most 500 videos per

Figure 9: An image prompt used in zero-shot audio classifi-
cation. Here, “the sound of” is always inserted, and the word
“birds” is one of the labels in ESC50 [90]. We consider one
image prompt for each label in ESC50 (or whichever dataset
we are using).

channel.
This process (finally!) gave us 30 million YouTube video

IDs that were likely to be high-quality.

E.3. Filtering videos from their metadata

Last, we filtered and downloaded these videos using a
filtering approach similar to [128]. We first retrieved the
video metadata and used it to filter out ‘gaming’ videos. We
then retrieved the video’s transcript, and filtered out any
video without a ‘dense’ span of spoken words – defined as
an interval of 30 seconds where at least 50 words are spoken.
Additionally, we used the Python package cld3 to filter out
any transcript with a probability of less than 80% of being
English. Last, we used a hidden feature in the YouTube API
to download four thumbnails of the video. Using the image
classification model from [128], we filtered out videos whose
four thumbnails had an average cosine similarity of above
85%, or that contained fewer than 1 object from COCO.

Unlike [128], we did not use a sequence-to-sequence
model to ‘translate’ spoken text to text that appears more
stylistically like written English (i.e., by adding capitalization
and punctuation, and removing filler words).

F. Additional Experiments and Exploration
In this section, we briefly include additional experiments,

showcasing our model’s performance on specific tasks that
do not necessarily require multimodal script knowledge.

F.1. Zero-shot Audio classification

We evaluate Reserve on the task of zero-shot audio
classification, to study to what extent its learned audio repre-
sentations can directly predict text-based labels. We conduct
this evaluation on environmental sounds from ESC50 [90],
urban sounds from US8K [98], and (as part of the privacy-
minded exploration in Appendix A) celebrity voices from
VoxCeleb2 [87].

28

Accuracy (%)
Model Prompting ESC50 US8K VoxCeleb2

AudioClip 68.6 68.8

Reserve-L

Text-only. 41.6 60.2 10.8
Image-only. 42.8 54.3 13.3
Image and text. 52.2 62.3 9.6

Table 11: Zero-shot audio classification accuracies (%) on
ESC50 [90], US8K [98], and VoxCeleb2 [87]. We compare
our model with AudioClip [54], which was pretrained on
supervised data from AudioSet [43]. Our Reserve per-
forms well across the board, especially when given both the
image and the text as a prompt – demonstrating its OCR
capability.

We consider the format where we encode an audio input
into a CLS level representation, and retrieve the most-similar
label given a set of encoded options. We encode the audio
input with our encoder, which takes in as input audio clips
of length at most 1.6 seconds. For shorter audio clips (like
many sounds in ESC50), we repeat them in time until their
length is at least 1.6 seconds. For longer audio clips, we
encode multiple CLS representations and then average the
resulting vectors.

We consider the following ways to encode the labels:

a. Text-only. Inspired by the prompt ‘a photo of’, which is
used in CLIP’s zero-shot image classification task [92],
we give Reserve’s joint encoder a blank image, with
associated tokens the sound of ${label}. We do this
once for each label, giving us a single ‘target’ vector for
each possible label in the dataset.

b. Image-only. Inspired by YouTube videos of sound
e�ects16, we created image-only prompts that suggest a
sound (of the target class) is playing in the background.
An example is shown in Figure 9. We encode each image
with our joint encoder, and do this once for each label.
We note that for VoxCeleb2, we use face images of
celebrities rather than this image-based prompt, due to
our interest in exploring whether models can perform
person-level recognition due to the privacy issue (Ap-
pendix A.1.1).

c. Image and text. Here, we combine both of the above
options: encoding one input for each label, using both
the image and text prompt.

For each prompt, we append the token ‘MASKAUDIO’ and
extract the hidden state from there, as our final representation
for that label.

We present our results in Table 11. The results show,
possibly surprisingly, that Reserve can perform optical
character recognition over image prompts like Figure 9 –

16For instance, youtu.be/VmgKryu4__k.

given just the image, its accuracy on ESC50 is higher than
given just text. Its accuracy on ESC50 and US8K improves
further when given both an image and text.

These results are slightly di�erent for VoxCeleb2, which
emphasizes long-tail recognition of people – something that
might be more encyclopedic than semantic, and that we did
not wish to optimize in this work. There, when given an
image of a celebrity’s face, it demonstrates some capacity
at linking it with one of their audio clips – a capacity that
decreases if prompted with additional text. We suspect
that this is due to interpreting the given text as spoken, for
example, Justin Bieber himself saying ‘the sound of Justin
Bieber.’ On all celebrities, Reserve struggles versus
recognition-focused models like CLIP [92] (Appendix A.1.1).

Overall, our model displays strong audio understanding
ability. In comparison, AudioCLIP [54] (which is supervised
on human-annotated labels from AudioSet [43]), performs
16% higher on ESC50, and 6.4% higher on US8K.

F.2. Additional Qualitative Analysis

In Figure 10, we include an additional figure of examples,
of the same format as Figure 5. The examples are chosen
randomly – not by how much Reserve improved at
retrieving their audio or text spans over the course of training.

29

https://www.youtube.com/watch?v=VmgKryu4__k

we'll be seasoning it
with this homemade
adobo seasoning i

couldn't find it

and then i'm gonna
take these two chicken
breasts and i'm gonna

[MASK]

the pollo bendito right
now i just have a little
bit of olive oil heating

up in a skillet

and some garlic bread
it ...

served it with a little
side salad of ...

shell recipe and boy
have i been missing

out because ...

... shells this was
actually my first time
ever making a stuffed

hey y'all welcome back
to another week of

what's for dinner it is
monday and i made

back i think basically
for the parental

innocent people is here

... ... affordable
weekend and people

come

people just keep
coming back year after

year but now it's
getting extremely hard

with the

... we had
queensland ...

... australia represented
here ...

that's still in original
condition is when i
bought it [MASK]

and a repaint there at
one stage other alden

renovated or restored it
other than just some
running maintenance

we've created to pay
their paper and have

the student go ...

... i'll have a appear we
use the same rubric

little writing rubrics for
our writing units we

create our ...

corrections anything
you'd like to share

well ...

differently in using
rubrics developing

rub ...

student learning so
when you were sharing
with your partner's did
you think of any ways

to involve students

[MASK] clear and
 specific ...

than student socio-
economic

characteristics in
addition to the power of

feedback we

*female-presenting voice, with a
U.S. southern accent; using a phone microphone*

dice them up and

*male-presenting narrator’s voice, with an Australian accent*one particular year we

*male-presenting voice introducing the speaker (Paula Andrews);
cheesy synth music in the background*

Know that expectations that are

Figure 10: MASKed audio self-supervision on di�erent examples. Similar to Figure 5, we show predictions from
Reserve-B over the course of pretraining. Match performance increases over time. The audio prediction in the

first row is perhaps made easier by the speaker’s australian accent. The audio prediction in the second row is perhaps easier due
to the lecture-video setting. In the third row, both audio and text span prediction improves, with text being slightly favored in
the end. This might be in part because of the truncation we do on audio (Section C.3) – the audio span is shorter than the text
span of ‘dice them up and’ so as to not leak information, making prediction more challenging.

30

